TITLE

INSTITUTION

EEPORT NO
POB DATE
NOTE
AVAILABLE FROM

EDFS PRICE
EESCF TTORS

Acadequc Science 1c72-77. R\&D Funds, scientists añ Engineers, Graduate Enrollment, कind Sufport, Final Report, Surveys of Science Resources Series. National Science Poundation. Dashington, D.C. Div. of Science Resources studies.
NSF-50-313
Jun 80
77p.: Appendix B may not reproduce well.
Superintendent of Documents, U.S. Goverament printing Office, Washington, DC 20402

MF01/PC04 P1us Postage.
College Faculty: *Emplcyment Pacterns: *Engineering; *Enrollment Trends: Ferales; Financial Support: Foreign Students: Full Time Students: *graduate Study: Higher Education: National Surveys; Part Time Studeats: *Research opportunities; *Sciences; Wemens Education
IDENTIPIERS *Research and Levelopment

ABSTRACT

An examination of the findings of thiee national surveys reveals that several statistical acadenic science rescurce indicators reflected a feriod cf growth during the mid-seventies. While this trend is expected to continue through the end of the seventies, the 9 percent increase in federal research and development (RED) funding to universities froposed in the presidentis 1901 budget 15 seen tc permit little if any real growth in the early eighties. These highlights are presented: in dollars, one-tenth of the RED was spent by universities in 1979, as well as one-half of the basic research. Although añual growth in R\&D expenditures averaged 9 Fercent between 1972 and 1977 . real growth was only 1 to 2 percent. During this period the life science dominated academic science and engineering (S/E) resonrce increased. Graduate institutions increased their emfloyment of S / E personnel by 3 to 6 percent overali in academe, part-time S / E personnel increased 35 percent, and full-time fersonnel increased 11 percent. S / E employees in RED increased at a full-time equivalent rate of 22 percent; those in teaching increased 14 percent. In addition, the rid=seventies was a period of increased participation by women in acdemic science programs. Despite an overall decrease in graduate level enroliments in 1974-77. graduate encollment in S / E rose, with fart-time enroliment rising faster than full-time, and with women's and foreign student enrollment rising faster than the average. Data are presented in nairative and tabular form. with survey forms and instructions for fiscal year 1977 appended. (DSE)

[^0]
"academic science
 ED 19 1972-77

r\&d funds

 scientists and engineers graduate enrollment and support"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GPANTED GY MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION GENTER INFORMATION OENTER (ERIC).:"
iv surveys of science resources series
(V) national science foundation

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402

related publications

Detailed Statistical TablesExpenditures for Scientific Activities at Universities and Colleges,Fiscal Year 1977NSF No. Pric78-311
Human Resources for Scientific Activities at Universities andColleges, January 1978$78-318$$-\infty$
Graduate Science Education: Student Support andFostdoctorals, Fall 197778.315
\qquad
Science Resources Studies Highlights
"Academic R\&D Expenditures Continue Real Growth Into 1977" 78-319
"Academic Scientists and Engineers Increase 3\% in 1978" 79-315"Graduate Enrollment Stabillzed in 1977"78-307

Availability of Publicationa

Those publications marked with a price should be obtaired directly from the Superintendent of Documents. U.S. Government Printing Otfce, Wastington, D.C. 20402. Where no prioe is ltated, single coples may be obtained gratis trom the National Selence Foundation, Washington, D.G. 20550.

foreword

The allocation of university resources is becoming increasingly complex because of some unusual current and prospective difficulties. Enrollment growth has been reduced and could actually become negative as a result of demographic factors that have already affected elementary and secondary school populations. The resulting lowered demand for faculty, coupled with the reduced number of new tenured positions. is creating in some fields a staffing problem that is likely to be aggravated during the next decade. Other fields, especially engineering and compuler sciences, have problems in attracting faculty. Expansion of graduate programs has already begun to taper off, but there have been increases in part-lime stody, changes in the age-mix of students, and increased interest in continuing education in nontraditional modes. Inflation as well as the changes in enrollment, have placed increased burdens on university budgets. All of these trends are likeiy to continue, at least into the near future, and will affect most aspects of academic endeavor, including those dealing with science and technology. Trade-oft's between research, instruction, and public service will have to be considered more carefully by most inslitutions. The difficult decisions that will have to be made can be put on a firmer basis if sufficient background information is available. This report is designed to provide such information.

This publication is the first in a series of consolidated biennial analyses of academic $R \& D$ expenditures, the utilization of scientists and engineers, and the characteristics of the graduate science student population. Data from three NSF academic surveys provide the basis for most of this study. In prior years, information from each of these surveys was analyzed and published separately. The new publication integrates results from all three and analyzes trends in more detaif. Suggestions and comments on this new publication are most welcome.

Charles E. Falk

notes

The term "science" as used in the institutional surveys on which this report is based is undersiood to include engineering. The abbreviation " S / E " refers to "science and engineering."

Unless constant dollars are specified. data for research and development and capilat expenditures are shown in this report in current dollars. When constant dollars are discissed, they represent an adjustment to the 1972 level and are converted to a fiscal-year basis. The gross national product (GNP) implicit price deflator prepared by the Department of Commerce is used as the basis for the conversion.

Data in part 1 cover fiscal years: data in part 2 are collected as of January in each year; data in part 3 are collected as of fall in each year.

Appendix tables at the end of this report are designed to provide the detailed data shown in the charts.

Details shown in appendix tables may not add to totals because of rounding.
For longer term and more detailed analyses. refer to data tabulated and illustrated in the publications listed on cover 2 of this report.

For information on the availability of data tapes, contact Moshman Assocfates, Inc., 6400 Goldsboro Road, Wash'*gton, D.C. 20034, or telephone 301-229-3000.

acknowledgments

This report was prepared in the Universities and Nonprofit Institutions Studies Group of the Division of Science Resources Studies by Penny D. Foster, under the direction of Richard M. Berry, Study Director. William L. Stewart, Head of the R\&D Economic Studies Section, and Charles E. Falk, Director, Division of Science Resources Studies provided general guidance and review. The report could not have been prepared without the excellent cooperation of the university and college officials who responded to the three annual NSF statistical surveys of academic science.

contents

Page
Highlights vi
Part 1. Trends in Academic R\&D Expenditures 1
General Characteristics, 1972-79 1
Detailed Characteristics, 1972-7.7 2
The Federal Role 2
Fields o"Science 2
Institutional Control 3
Geographic Distribution 4
Impact of Federal Policies on Institutional Concentration 4
Capital Expenditures for Research, Development, and Instruction 5
Part 2. Trends in Science and Engineering Employment 7
General Characteristics, 1973-78 7
Employment Status 8
Type of Activity 9
Type of Institution 10
Sex of Full-time Scientists and Engineers, 1974-78 10
Minorities, 1973-77 12
Postdoctoral Utilization, 1974-77 13
Part 3. Trends in Graduate Science Enrollment 16
General Characteristics, 1974-77 16
Enrollment and Degree Patterns 16
Full-time Graduate Science Enrollment in Doctorate-Granting Institutions 17
Federal Support Patterns 17
Other Sources of Support 19
Mechanisms of Support 19
Women in Graduate Science Programs 19
Foreign Students 20
Part-time Graduate Science Enrollment at Doctorate-Granting Institutions 21
Appendixes:
A. Technical Notes 24
B. Statistical Tables 28
C. Survey Forms and Instructions, FY 1977 45

overall trend

- An examination of the findings of three national surveys reveals that several statistical academic science resource indicators - R\&D expenditures, employment of scientists and engineers, and graduate enrollment in science and engineering (S / E) programs-reflected a period of growth during the midseventies. While this trend is expected to continue through the end of the seventies. the 9-percent increase in Federal R\&D funding to universities proposed in the President's 1981 budget will permit little if any real growth in the early eighties.

r\&d expenditures

- Of the $\$ 54$ billion estimated to have been spent nationwide in 1979 for research and development. about one out of every ten $R \& D$ dollars was spent by uñiversities and colleges. One=half of the $\$ 7$ billion devoted to basic research was performed in academia.
- Between fiscal years 1972 and 1977. growth in academic R\&D performance averaged 9 percent annually in current dollars, most of which occurred after fiscal year 1974. However, inflation reduced this growth to an average of 1 percent per year in real terms over the five years reported in this publication and at 2 percent per year beginning in fiscal year 1975. A rise in academic employment of scientists and engineers accompanied this growth in R\&D expenditures, increasing at a yearly rate of 3 percent.
- During 1972-77 the life sciences dominated academic S / E resource in= creases. R\&D expenditures in the life sciences accounted for 65 percent of the fiscal years 1972-77 net growth. Federal funding of the life sciences in
the same period accounted for 66 percent of the growth in all federally financed R\&D expenditures. The largest absolute increase in postdoctoral utilization between 1974 and 1977 was attributable to life science fields. where 80 percent of the net growth was concentrated. Over one-half of the rise in the number of academic scientists and engineers employed hetween January 1973 and January 1978 also occurred in the life sciences, as did growth in full-time graduate S / E enrollment. particularly students holding research assistantships.

academic s/e personnel

- Doctorate-granting institutions increased their employment of scientists and engineers by 3 percent per year between January 1973 and January 1978. An even higher rate of growth occurred in master's-granting institutions, up an average of over 6 percent per year
- Nearly 17.000 more part-timers , ar employed in 1978 in universities and colleges than in 1973, an increase of 35 percent: an even higher number of fulltimers was added, 24.700. but their growth rate was considerably slower, up 11 percent in five years. The surge in part-time employment suggests an in= creasing institutional dependence on short-term and relatively transient appointments and a slowing down in the hiring of full-time staff, particularly by 2 -year institutions.
- On a full-time-equivalent (FTE) basis, the number of scientists and engineers employed in R\&D activities in= creased 22 percent in five years: those in teaching rose by 14 percent. The rise in R\&D involvement was consistent with the concurrent increase in R\&D expenditures and utilization of postdoctorates and graduate research assistants.
- The midseventies marked a period of increased participation rates of women in academic science programs, both in employment and in graduate enrollment. The rate of growth in numbers of women employed full time as scientists and engineers averaged 6 percent per year, while employment of men grew much slower, at an average of 2 percent per year. In 1978 women represented 16 percent of the scientists and engineers employed full time in universities and colleges.

graduate s/e students

- While overall enrollment at the graduate level decreased between 1974 and 1977 . doctorate institutions reported a 15 -percent rise in graduate S / E enrollment, raising the share flowing into graduate science and engineering from 22 percent to 28 percent.
- Enrollment on a part-time basis in graduate S / E programs rose ata faster pace than full-time enrollment, 26 percent compared to 11 percent. This accelerated growth pattern brought the part-time share up from 26 percent of the graduate S / E enrollment total in 1974 to 29 percent in 1977. The life sciences accounted for 40 percent of the net growth in part-time enrollment and engineering fields for another 35 percent.
- Women represented 29 percent of the full-time graduate S / E enrollment total. and the proportion of women enrolled was on the rise. Between 1974 and 1977 their number increased 37 percent while the number of men enrolled full time increased only 4 percent.
- While foreign students constituted 17 percent of the full-time S/E graduate enrollment total in 1977, their 1974-77 rate of growth (16 percent) exceeded that of U.S. citizens studying full time (10 percent).

part 1.

trends in academic r\&d expenditures

general characteristics, 1972-79

Academic survey data analyzed in this report cover the fiscal years 1972 through 1977; estimates for 1979 have been calculated for presentation in the National Science Foundation's (NSF)

recurring publication series that analyzes national patterns of R\&D resources.' These estimates indicate that the academic sector's role in the performance of research and development accounted for less than one out of every ten R\&D dollars spent in the United States in 1979, Of the $\$ 54$ billion estimated to have been spent nationwide in 1979 . only about $\$ 5$ billion represented R\&D activity performed in universities and colleges fappendix table B-1 and chart 1). To view the volume of university $\mathrm{R} \mathrm{\& D}$ performance in terms of the total U.S. level. however, tends to obscure the academic sector's substantial contribution to basic research. To gain a better perspective, one should focus on the dollars spent in academia for basic research performance alone. Just over one-half of the estimated U.S. total of $\$ 7$ billion committed to basic research in 1979 was performed in the acadenic sector (appendix table $\mathrm{B}=2$ and chart 2). When the amount devoted to basic research conducted in federally funded research and development centers (PFRDC's) associated with universities is added to this total, the proportion becomes even higher-three-

[^1]fifths of the national basic research total. The universities' R\&D totals discussed here are actually understated; they represent separately budgeted research activity only. The amount of departmental research performed in university facilities cannot be reported by institutions through current accounting procedures since it cannot be separated reliably from the resources devoted to instruction.

detailed characteristics, 1972-77

In the 5 -year period, 1972-77, examined in detail in this report, current-dollar volume of university basic research expenditures rose by 38 percent, but this apparent growth was not sufficient to overcome the effects of inflation, and, in fact, a 3 -percent erosion in the realdollar level actually occurred.: This downturn in academic basic research performance over the entire five years took place at the same time that applied research activities in university laboratories were growing in real dollars. However, the relative level of applied research funding is still small (appendix table B-3 and chart 3). The surge in universily expenditures for applied research raised the total from $\$ 544$ million in 1972 to $\$ 1.067$ million in 1977, nearly doubling in current dollars and up 38 percent in constant dollars. Although the real rate of growth averaged 6.6 percent per year during 1972-77, the total academic expenditures devoted to applied research amounted to only one-tenth of the national applied research total by 1977.4 When compared to universities major role in the conduct of basic research, this small fraction devoted to applied research by universities is placed in better perspective.

the federal role

The symbiotic r nship that exists today between the rideral Government and the university research community had its roots in Presidential initiatives at the end of World War II and culminated in the creation of the Office of Naval Research in 1946 and NSF in

[^2]
1950. This was the beginning of largescale Federal efforts to channel Federal resources into university research lab= oratories. thereby strengthening basic research through the use of public funds. In 1953 when the first NSF national data collection effort began. universi= ties reported the expenditure of $\$ 110$ million for basic research, of which $\$ 73$ million, or 66 percent, came from Federal sources. In 1977 the Federal

Government disbursed $\$ 2.0$ billion to universities, or 71 percent of their $\$ 2.8$ billion basic research funding. For a discussion of institutional and Federal agency reporting concepts, refer to the technical notes on page 24 .
Federal funding of all academic R\&D activities grew modestly between 1972 and 1977 in real-dollar terms, up only 4 percent overall, for an average of less than 1 percent per year (appendix table B-4 and chart 4). During this period, the proportion Iunded by Federal sources changed little, ranging between 67 percent and 69 percent (appendix table. B-5). In the midsixties, however, the Federal role was more substantial: agencies supported over 73 percent of all academic R\&D activities. " The lowered Federal share in the seventies was accompanied by a rising contri= bution from all other sectors. NonFederal support levels for R\&D activities rose at about twice the annual rate of Federal funding in real-dollarterms between 1972 and 1977. Support from the institutions themselves constituted the largest component (38 percent). with State and local governments providing the next largest portion (28 percent). Foundations and industrial firms logether accounted for another 25 percent in 1977. Industrial R\&D support to universities rose at the fastest pace of all non-Federal supporters of research and development, followed closely by growth in institutional support. Because of the rising support levels from other-than-Federal sources real net growth in total academic R\&D expenditures during 1972-77 amounted to almost 7 percent. or more than 1 percent per year.

fields of science

Both total and federally financed R\&D expenditures grew in every major area of science between 1972 and 1977 except for the interdisciplinary category, "other sciences, n.e.c." Both the life and environmental sciences showed the same R\&D growih pattern; both fields expanded in current-dollar terms

[^3]
by two=thirds betwe $\cdot: 1972$ and 1977. prompted by simila. expansion in Federal support (apuendix tables B-5 and B-6 and ohart 5). The share of $P \& D$ activities develed to the life sciences. where the bulk of R\&D performance took place in universities, rose from 61 percent in 1972 to 56 percent of the funds in 1077 , up to a total of $\$ 2.3$ billion. the nextrinked fields, engineering and the phesical stiences, received only 12 perrent and it pescent, respectively. of we 1977 R\&) funds, and the lowest share went to exychology; only 2 percent
In 1977 the physical : iences ranked firet in terms of the pe:centage of Fedoral support received and the social sciences last (chart it

institu:onal control

Although both public and private institutions increased their $R \& D$ spending in terms of current dollars between 1972 and 1977, privately controlled institutions lagged t shind in real-dollar outlays (appendis table B-7 and chart 7). The 1 -perient per year average decline contrasted with the annual gain of 3 percent per year by public institutions. The relative magnitude of public insiitution R\&D spending also rose, from 61 percent of the total in 1972 to 65 percent in 1977.

In spite of this increase in the proportion oì tesearch and development performe it ablicly controlled institutions, the ceesral role was less visible the. ev than in private ones. In 1977 Fed ral agencies contributed a higher eportion of R\&D funding to private in, stitutions (78 percent) than they did if publit. institutions (61 percent). a constent pattern in the five years studied (appentix table B-8 and chart 8). Also, private nstitutions performed a higher proport 'in ot basic research (81 percent) than d those institutions under public contro ($\mathbf{6 2}$ percent).
Whice the relative emphasis placed o: R\&D expenditures in each field of science was similar in both public and private institutions, the proportion spent 0 a agricultural sciences was considerably higher in public institutions (17 percent compared to 2 percent) because of the influence of agricultural experiment stations affiliated with

land-grant colleges. In contrast. pri= vate institutions conducted a higher percentage of biological and medical sciences research than did those under public control.

geographical distribution

In 1977 every geographical division in the United States expanded its academic R\&D level over the 1972 total (charts 9 and 10). The Pacific States moved from second place in 1972 to first in 1977 , spending nearly $\$ 300$ million more (appendix table B-9). In relative terms, the highest growth rate occurred in the West and East South Central Divisions and the lowest in New England. In spite of their low growth rate, the New England States reported the highest percentage of Federal R\&D support to their institutions of higher education (appendix table B-10). Pacific States ranked next in the share of Federal funds received.

California and New York together accounted for about one-fourth of the Nation's academic R\&D spending in 1977, about the same fraction as in 1972. These two States also accounted for -one-fourth of the Federal dollars. R\&D expenditures by institutions in Texas nearly doubled in five years, the highest growth rate of any of the 10 leading States.

impact of federal policies on institutional concentration

The effects of Federal R\&D funding policies that were inaugurated in the midsixties have been analyzed in a recently completed NSF sponsored study." A 1965 Presidential directive to agency heads called for ". . . the maintenance of outstanding quality in science and engineering education in those universities where it exists . . .". while acknowledging at the same time that ". . . ton few institutions in too few areas of the country . .." receive such funds.: The NSF study showed that in

[^4]

Chart 10. R\&D expenditures (Millons i

niversities and colleges 1977

1950 one-half of all Federal academic research funding was concentrated in only 11 universities; by 1977 the number had increased to 30 institutions. ${ }^{\text {. }}$

The growth in Federal science funding of the sixties provided the favorable climate needed for adhering to these two simultaneous distributional objectives-maintaining excellence of major research performing institutions and wider geographic dispersion. In the seventies, however, a period of curtailed growth in Federal support of academic $\mathrm{R} \& \mathrm{D}$ activities made tradeoffs necessary between hard choices of decentralization and continued support of centers of research excellence.

Empirical evidence derived from data reported from 1973 through 1977 by 274 doctorate-granting institutions on NSF's survey of R\&D expenditures confirmed the stability of distributional patterns for both federally funded and nonfederally funded $\mathrm{R} \& \mathrm{D}$ expenditures" (chart 11). Between 1973 and 1977. the period examined by this special study, the 10 leading institutions in terms of Federal $R \& D$ funding received about the same proportion of furds each year, ranging between 24 percent and 26 percent (appendix table B-11). Together, the leading 100 institutions received just over 86 percent each year. Non-Federal funding paralleled the distributional pattern of Federal funding. The study also found that no significant differences exist between fields where research is ustually sapital intensive and those where it is not. This high degree of stability indicates that the primary goal of Federal agencies to maintain support for leading research performers was met during 1973-77, as the relative amount of federally funded $\mathrm{R} \& \mathrm{D}$ expenditures remained virtually unchanged in real dollars.

capital expenditures for research, development, and instruction

In 1977, universities invested over $\$ 960$ million in facilities and large items of equipment devoted to research,

[^5]
development, and instruction (appendix table B-12 and chart 12). In addition to this amount, purchases for research instrumentation and smaller items of scientific equipment are often made out of current R\&D accounts related to specific projects rather than from capital funds. Findings from a recent NSF survey of the Higher Education Panel estimated that Ph.D.-gianting institutions spent about $\$ 247$ million for scientific research equipment out of their current R\&D project funds in fiscal year 1978 and approximately $\$ 33$ million from R\&D plant funds. " Other Federal efforts at determining the amount of funds invested in research equipment have begun through the addition of an "optional" dataitem that has been added to the Survey of Scientific and Engineering Expenditures at Universities and Colleges, FY 1979. This survey is designed to provide NSF with the beginnings of a data system to measure, for the first time, the level of annual outlays by universities for research equipment paid for out of current fund accounts.

The 1972-77 period was marked by considerable fluctuations in the amount of capital investment by universities and colleges from year to year. The period closed at only a slightly higher level than five years earlier. The effects of inflation in the seventies nullified this nominal growth.

Although Federal agencies have established a prominent role in the support of current R\&D expenditures within universities, they have exhibited a much lower profile in the financing of capital outlays. Federally financed expenditures for new construction and modernization of existing instruction and R\&D facilities amounted to only $\$ 195$ million in 1977, down from $\$ 239$ million in 1972. The proportion supported by the Federal Government has ranged from its peak (32 percent) in 1968 to its lowest point (20 percent) in $1977 .{ }^{11}$

[^6]Recent Federal efforts toward correcting the sliding capital outlays reported by universities have stressed an increased sharing of existing equipment, the encouragement of better methods of determining current inventories, and improved university accounting systems to set aside adequate funds for maintenance and replacement. New regulations instigated by the Office of Management and Budget (OMB) calling for revisions in the method of calculating indirect costs have taken effect in 1980 and could be effective in encouraging these improved management controls.

Of the total outlay for buildings and equipment related to instruction and R\&D efforts in 1977, 87 percent was concentrated in 100 of the 539 institutions surveyed, and the 50 leading capital investors accounted for 69 percent of the total. This intense commitment of resources by so few institutions can be more readily illustrated through an examination of the degree of concentration in fields of science. Two-thirds

of the total 1977 investment went for facilities devoted to the life sciences, almost $\$ 645$ million. Of this amount, $\$ 456$ million, or 71 percent, was spent by 42 of the 50 leaders, those associated with medical schools and health sciences centers that embarked on extensive building and renewal projects. The heavy capital outlay in the life sciences amounted to over $\$ 3.5$ billion of the $\$ 5.6$ billion 5-year total. All other major fields tra:' d far behind in capital expenditures, with the mathematical and computer sciences receiving the least em= phasis (chart 13).

Publicly controlled institutions invested more heavily in capital facilities and equipment than did private institutions, accounting for 71 percent of the total outlay in 1977, slightly less than their 73-percent share in 1972 (appendix table B-13). Federal agencies distributed 61 percent of their capital expenditures support to public institutions in 1977, down from 67 percent five years earlier.

part 2.

trends in scientific and engineering employment

general characteristics, 1973-78

The NSF survey of academic employment of scientists and engineers described in this report defines professional employees of institutions of higher education as those working at a level that requires at least a bachelor's degree. Personnel considered scientists and engineers are faculty members, posidoctorates, and all other professionals working in S/E disciplines, including research administrators.
In the 5 -year period analyzed, January 1973 through January 1978, academic institutions have added an average of 3 percent more scientists and engineers o their employment rolls each year. ${ }^{12}$ The number of professionals employed cull time rose at an average annual ate of 2 percent and part-lime employees it three times this annיual growth rate chart 14). This period of expansion :ame at a time when the number o! loctorate recipients in science dis:iplines, the pool from which many of hese academic employees were drawn, vas on the wane (appendix table B-14).

[^7]A 7-percent drop in newly earned doctorates in all S/E disciplines was recorded between June 1972 and June 1977, and in three fields, engineering, the physical sciences, and mathematical sciences, the 5 -year decline reached 25 percent ${ }^{14}$ (chart 15). In these same

[^8]
three fields. however, academic employment grew, an indication that demand for doctorate recipients in these fields has been steady in the higher education sector in spite of a simultaneous reduction in supply. The life sciences employed the greatest number of scientists in academic institutions in 1978 and was the field most often chosen by 1977 doctorate recipients. The social sciences ranked second in both employment and field of doctorate received. Psychology ranked third in numbers of Ph.D.-holders but sixth in employment size; environmentalists ranked lowest in both measures.
The life sciences and social sciences each accounted for nearly one-fourth of the total net growth of 41,600 academic scientists and engineers during 1973-78. Mathematical and computer scientists represented another one-fifth of the total growth. Expansion on a national scale in the doctoral labor force in these same three broad fields was projected by NSF through 1987 to a total of 47 percent (life sciences), 55 percent (social sciences), and 40 percent (mathematical and computer sciences) ${ }^{14}$

[^9]

5 and chart 16). An owth was projected orate-holders in the , 64 percent.

tatus

iic S/E employment percent per year 1978, a significant dent between the l-time and part-time sarly 17,000 more ployed in 1978 than of 35 percent. An - of full-timers was heir rate of growth
was considerably slower, up 11 percent during 1973-78. This employment pattern of professional scientisis and engineers followed closely that of instructional staff in all institutions of higher education in all fields-the number of full-time instructors or above was projected by the National Center for Education Statistics to rise by 16 percent between 1973 and 1978, while part-time instructional staff was projected to rise by 56 percent. ${ }^{\text {" }}$

Scientists and engineers employed

[^10]
on a full-time basis represented 79 percent of the academic employment total in 1978, down from 82 percent in 1973 (appendix table B-16 and chart 17). This slight shift away from full-time into part-lime status occurred in every field of science except the life sciences; where the ratio remained the same in both years. The pervasive nature of this movement into part-time employment may indicate that some institutions were gradually reducing the ratio of full- to part-time employees in order to effect economies in salary payments and fringe benefits, such as retirement and health insurance plans, and in anticipation of future reductions in both undergraduate and graduate S / E enrollment. A recent study of the overall academic labor market revealed that ". . . the supply of part-timers is probably larger than that of full-timers, both because academic employers can draw on persons with full-time jobs to teach an occasional evening or off-hours course, and because part-timers can be hired with a lesser degree or with less experience than full-timers. . ." ${ }^{\text {is }}$
The number of Ph.D.-holders employed by universities and colleges went up 21 percent between 1973 and 1978, and master's degree-holders rose by

[^11]almost the same percentage, up 20 percent. The distribution of this growth differed, however, when employment status was examined. Ph.D.-holders made up 83 percent of the net growth in full-time employment, and master's degree-holders made up 59 percent of the part-time growth. Bachelor's-degree recipients made up only 3 percent of the 1973-78 employment growth, with full-timers showing a net loss of over 2,000 . offset by an increase of 3.400 part-timers.

type of activity

Two different collection methods have been employed by NSF to measure the change in level of academic employment of staff holding teaching and research appointments. To measure the amount of effort devoted to these activities the NSF personnel survey has used both a "primarily employed" and a "full-time-equivalent" (FTE) concept during the period studied. The former method requires institutional respondents to classify their professional staff according to how they spent the major portion of their time, i.e., whether in teaching. research and development, or any other S/E activity. The alternate method using FTE scientists and engineers converts the headcount data into the approximate ime or effort spent in each of the three functions. On a "primarily employed" basis, both teaching and research staff increased at about the same percentage between 1973 and 1978-18 percent and 17 percent, respectively (appendix table B-17). By moving to an FTE basis for measuring time spent in these activities, however, institutions reported that the number of FTE scientists and engineers involved in $R \& \bar{D}$ efforts rose at a faster rate than did those in teaching, up 22 percent compared to 14 percent. This finding is supported by data provided from a biennial NSF sample survey to determine the characteristics of doctoral scientists and engineers. Individuals iurveyed reported a higher growth rate n their R\&D involvement, up 38 percent jetween 1973 and 1977, compared to heir teaching activity, up 13 percent appendix table $\mathrm{B}-18$).
The increase in R\&D activity noted tbove is directly related to the rise in

academic R\&D expenditure levels discussed earlier. This trend toward heavier emphasis on $R \& D$ spending by universities has been shown to affect the type of appointments being made. In a recent study of the causes underlying the 3 -percent per year growth pattern of all academic scientists and engineers. NSF staff visited 14 public and 9 private doctorate-granting uni= versities to examine the nature of this employment expansion. ${ }^{17}$ Among its other findings, the study determined that growth in sponsored research funding is beginning to influence academic recruitment practices. A shift was noted to an increasing use of doctoral research staff and short-term appointees that were hired for specific research projects. especially in major research universities. The ability of these scientists and engineers to obtain outside support was found to be the major determinant in the hiring of such researchers.
Another study conducted by the

[^12]National Research Council (NRC) in 1978 determined the characteristics of nonfaculty doctoral staff, and it concluded that this group, while an important segment of the academic community, represented only 3 percent of all doctoral scientists and engineers employed in academia in 1977 and that more than one-hall were employed in the biosciences and physics. ${ }^{19}$ This relatively small component of the academic staff may become more significant as the research enterprise grows in complexity. The study noted that ". . . The large, complex research projects . . . require long-term staff with specialized skills who can devote their full-time energies to specific tasks . . ." without the distraction of teaching responsibilities. If academic $\mathrm{R} \& \mathrm{D}$ expenditures continue to maintain the momentum exhibited during the 1972-77 period, doctoral research staff without faculty rank will provide an invaluable resource for $\mathrm{R} \& \mathrm{D}$ performance. In addition, postdoctoral utilization will probably continue to increase even though these research appointments are usually considered to be temporary. The number of postdoctorates grew at twice the rate of increase observed for all other types of academic S/E employees between 1974 and 1977.

These findings are reinforced by several other studies-one funded by NSF and conducted by NRC and another at Harvard University, NRC assessed the nature and magnitude of future declines in openings in all universities for new faculty and found that ". . . in the absence of ... policy intervention, there will be a substantial and sustained decline in openings for new faculty in a number of science and engineering fielde. This decline stems from two key forces: (1) An absence of growth in total faculty size, resulting from low present growth and projected decreases in college and university enrollments and a comparatively steady level of research funding: and (2) low rates of retirement of present tenured faculty, resulting from low rates of faculty growth during the 1940 's and 1950 's compared to the 1960 's, and from changed laws affecting

[^13]retirement policies . . \because 'I These same factors were also cited in the Harvard study, which also found a decided difference in the effects demography will have on major research universities "which tend to have strong student markets relative to the rest of higher education . .." and concluded that "major research producers will not be among the worst affected by the impending decline. but the impact that some of them will feel is likely to be significant . . ."z

type of institution

Of the net growth of 41.600 scientists and engineers employed in the academic sector during 1973-78, nearly three-fif ths joined doctorate-level institutions, which showed a 2.7 -percent annual rate of growth (appendix table B-16 and chart 18). The key role played by doctorate institutions in the overall employment growth pattern can be traced to their ability to continue to draw support from State legislatures or to have ready access to large endowment funds. Also, student demand is likely to remain strong in

- major established universities, both public and private, where the reputation for quality has been strong over the years. The heavy concentration of research in doctorate institutio.., also explains their prominence in the growth of academic employment. They accounted for 22,500 of the 31,200 FTE scientists and engineers added between 1973 and 1978 (72 percent). And those FTE's employed in doctorate institutions in R\&D activities accounted for 45 percent of the total FTE growth during 1973-78.

An even higher rate of employment growth occurred in master's institutions than in doctorates, up an average of 6.4 percent per year during 1973-78. These institutions accounted for 25 percent of the net growth during this period, employing a total of 39,200 scientists and engineers by 1978. Another 21 percent

[^14]
of the net addition to academic employment occurred in 2 -year and nonscience-degree-granting institutions together, growing at the rate of 4.8 percent per year. Only the bachelor's-level institutions recorded a dropoff in employment. averaging 1.5 percent per year.
The employment "mix" of full- to parttime scientists and engineers changed considerably between 1973 and 1978 in master's-granting institutions and those

granting 2-year and nonscience degrees (appendix table $\mathrm{B}-16$ and chart 19). The rise in proportion of part-timers in these institutions stiggests a sharper curtailment in hiring of permanent employees and an increasing dependence on shortterm and transient appointments. A varicty of reasons behind this increased utilization of part-imers in all institutions of higher education has surfaced in recent studies of this aspect of the academic labor market. The high rate of growth in S/E employment at 2-year institutions particularly was confirmed in studies of salary differentials between full- and part-time employees in all fields. One such study found that "... A larger proportion of part-timers are hired at two-year institutions than at any other institutions of higher educdtion. Stringent pressures to keep tuition costs low for the relatively low income clients which these institutions serve and limited State and private funding make the hiring of less costly faculty an attractive option; increasing enrollments and fairly high turnover rates provide these institutions with the opportunity to increase the number of part-timers without causing substantial dislocations of full-timers. . "21 A warning signal has been raised about the future in another study that concluded that ".... In the absence of a set of well-defined skill levels for part-timers, those institutions which employ part-timers without an appropriate system of incentives may experience a lessening in the quality of their educational offerings. . ."?

sex of full-time scientists and engineers, 1974-78

In 1978, men represented 84 percent of the full-time scientists and engineers employed in universities and colleges; in 1974, when data on sex were first collected in this series, they accounted for 85 percent, an almost imperceptible difference. This percentage, however, was considerably higher than their

[^15]75-percent representation in all fulltime instructional faculty positions in academic year 1977-78. *a

In spite of the relatively insignificant change in the proportion of women employed full time as scientists and engineers between 1974 and 1978, they accounted for 29 percent of the net growth of all full-time S/E employment. Also, an examination of the increase in the number of male scientists and engineers employed full time in academia between 1974 and 1978 showed their annual rate of growth to be slower than that of women, 2 percent per year compared to 5 percent per year, which was evident in every major field (appendix table $\mathrm{B}-19$ and chart 20). In the entire national pool of scientists and engineers, this pattern also prevailed-the rate of growth in th. U.S. total of women scientists and engineers outstripped the growth rate of men between 1974 and 1978^{44} (appendix table B-20 and chart 21). In contrast, men's

[^16]
unemployment rate was lower than that of women scientists and engineers in each of the years 1974. 1976, and 1978 (appendix table B-21 and chart 22).

The pattern of increased participation of women employed full time in science and engineering in academia as de. scribed here does not reflect all of the realities of the job market. Salary differentials between men and women exist in all sectors of the economy and in some fields the gap is widening. In

any discussion of comparative salary levels, however, it is important to look at the difference between entry level and experienced level salaries sepa= rately. rather than at median annual salaries alone, which are not as sensitive an indicator of differentials. Also, any analyses of salary differentials related to sex, to be meaningful, should take into account as many of the factors as possible that affect this dollar spread between men and women: (1) The field of science in which the comparison is made; (2) the level of education attained; (3) the age bracket; (4) the number of years in the labor force, or years after the degree is earned; (5) geographic area, whether urban or rural; (6) eco-

nomic sector of employment, such as Government, business, educational, or nonprofit institutions, etc.; (7) type of work activity in which engaged, such as teaching, research and development, management of research and development, or other activity; and (8) full- or part-time status; and probably many more relevant factors. Some of these characteristics have been examined in a current NSF study of sex and ethnic differences in the Federal Government's employment of scientists and engineers that may help explain salary differences in the academic sector, ${ }^{3 n}$

As part of a recent NRC study of salary differentials, special tabulations from the Survey of Doctorate Recipients showed that at the full-professor level, the dollar gap between men and women actually widened between 1973 and 1977 in three fields: chemistry, medical sciences, and psychology. ${ }^{24}$ At the assistantprofessor level, however, all of the fields studied showed an improvement in the equalization of salaries between men and women doctorate-holders during 1973-77, although men's salaries were still slightly higher in 1977 . Overall, the average salaries of male doctorateholders in all sectors of S/E employ= ment, including academia, averaged $\$ 5.400$ higher than their female counterparts, up from $\$ 3,600$ higher in $1973 .{ }^{27}$

An NSF-sponsored study assessed job access, positions, promotion practices, and salaries of women holding higher education appointments through a series of site visits to nine typical institutions. The NSF graduate enrollment and em= ployment surveys were used as the primary data sources." ${ }^{\text {" }}$ The NSF= sponsored study noted that "the absolute numbers of women scientists/engineers may be increasing in some cases, but

[^17]the percentages are small and women are still found in the lower ranks and untenured positions of academe." The campus interviews also revealed that competition for women scientists is increasing from private industry, as are the salary levels offered, and the number of national research opportunities are growing. Industrial jobs are becoming more plentiful, even for bachelor's and master's degree-holders, so that the pipeline that is providing a larger pool of women could well be directed away from the university setting and into business and industry, if such demand continues.s:

minorities, 1973-77

The biennial Survey of Doctorate Recipients conducted for NSF by the NRC provides some perspective on the minority employment picture of doctoral scientists and engineers in the Nation as well as in academic institutions." ${ }^{31}$ Results from this sample survey show that the total number of Asian doctorate-

[^18]holders employed in S/E fields in all economic sectors rose between 1973 and 1977 by an estimated 63 percent (appendix table B-22). This high rate of growth had very little impact, however, on Asian representation in the national totals of all doctoral scientists and engineers. The 15,700 Asians holding Ph.D.'s in science and engineering in 1977 repre= sented only 5 percent of the total, up only slightly from their 4 -percent share reported four years earlier. The number of blacks holding S/E Ph.D.'s grew at about the same rate as whites, 27 percent and 25 percent; respectively, but black representation was lower than that of Asians, less than 1 percent of all S/E doctorate recipients in both 1973 and 1977 (about 2,800 of the 303,300 total).

The academic sector employed less than one-half of the Asian doctorate recipients as scientists or engineers in 1977, nearly two-thirds of the black Ph.D.-holders, and over one-half of the white doctorates. Considerable variance was observed among whites, blacks, and Asians in their field of academic employment. Only in the life sciences did they exhibit equal representation-about 30 percent of whites and blacks and 32 percent of Asians were employed in life science disciplines in universities and colleges (appendix table B-23 and chart 23). Engineering attracted a higher percentage of Asians thaín blacks or

whites; the social sciences and psychology employed a higher percentage of blacks than whites or Asians. These 1977 distributional patterns were about the same as in 1973.

This same survey of doctorate recipients provides data on median annual salaries of doctoral scientists and engineers employed in the United States according to race. In 1973 there was little measurable difference in salaries among white, black, and Asian doctorateholders. By 1977 a discernible gap had developed-whites received about 8 percent or $\$ 1,800$ more per year on the average than did blacks or Asians.

Another source of data on minorities concerns the entire U.S. labor force of scientists and engineers and shows a decided growth pattern between 1974 and 1978, the years for which data are collected through the Scientific and Technical Personnel Characteristics System (STPCS) developed by NSF from three separate data bases." The national estimate of S/E employment patterns show that the 114,100 minority scientists and engineers in the U.S. labor force in 1978 represen ted a 15 -percent increase over the 1974 total. In spite of this rise, their representation in the entire S / E
"National Seionce Foundation. U.S. Seientists und Kinginetrs. op.cit.

labor force remained at about the same level in 1978 as in 1974-just over 4 percent (appendix table B-24).
The unemployment rate estimated for blacks in S/E fields in 1978 showed a decided improvement over the rates estimated in 1974 and 1976 and matched that of white scientists and engineers at about 1.5 percent. Asians and other minorities also exhibited lower unemployment rates in 1978 compared to 1976 (appendix table B-25 and chart 24).

postdoctoral utilization, 1974-77

While data on S/E postdoctoral appointees are not separately identifiable on the NSF Survey of Scientific and Engineering Personnel Employed at Universities and Colleges, their characteristics and support patterns can be derived from another data source, the NSF Survey of Graduate Science Student Support and Postdoctorals. This departmental survey of graduate S/E programs has provided postdoctoral data from doctorate-granting institutions for the period fall 1974 through fall 1977, which is considered equivalent to the January 1975 through January 1978 collection period of S / E employment survey statistics.
Findings from the postdoctoral survey indicate that the total number of personnel holding these appointments grew at twice the rate shown by the total academic S/E employment population in comparable years (appendix table $\mathrm{B}-25$ and chart 25). While the total number of postdoctorates in fall 1977-19,700represented only 6 percent of the 306,500 scientists and engineers reported as employed in the academic sector in January 1978, the size of the postdoctoral pool grew a total of 18 percent in four years while all other academic employees grew at only one-half this rate. The highest rate of postdoctoral growth occurred between 1976 and 1977.
Postdoctoral employment rates should be compared not only with those of other academic scientists and engineers but with utilization patterns of both graduale research assistants and new S / E doctorate recipients. In 1977, for instance, the ratio of full-time students holding research assistantships to postdoctoral appointees in doctorate institutions was over 2 to 1 at the total level. This pattern varied
considerably, however, by field of science. For example, the social sciences utilized research assistants at the highest ratio of any field- 14 students to 1 postdoctorate. This minimum usage of postdoctorates matched the relatively low standing of the social and other interdisciplinary sciences in terms of academic $R \& D$ expenditures in fiscal year 1977-only 9 percent of the R\&D funds of doctorate institutions was devoted to these fields (chart 26). Employment plans expressed by new doctorate recipients in social sciences disciplines in 1977, as reported on the NRC Survey of Earned Doctorates, indicated that only 6 percent desired postdoctoral study in these fields on graduation; the majority expected some other form of employment within education institutions. ${ }^{\text {th }}$ In contrast, newly graduating doctorate recipients in the lifesciences indicated a much stronger preference for posidoctoral study, 47 percent, than for other types of employment. These fields had the highest proportion of academic R\&D expenditures, about 56 percent in fiscal year 1977, and the lowest ratio of research assistants to postdoctorates, about 1 to 1 .
In a related 1975 study that concentrated on changes in the environment of graduate education between 1968 and 1973, the National Board on Graduate Education

created profiles of 14 fields of graduate study, including both S / E and humanities disciplines, in order to look at the effects of rapid shifts in public policy toward graduate education. ${ }^{34}$ As part of this report, employment plans of new Ph.D.'s from the NRC Survey of Earned Doctorates were analyzed and several disciplines were compared in conjunction with site visits. For example, almost one-half of the new doctorate-holders in chemistry chose postdoctoral positions in academic institutions in 1973. up from 28 percent in 1968. This type of appointment was found to be almost mandatory for students expecting faculty positions in chemistry. In contrast, industrial jobs in chemistry were listed far less frequently in 1973 than in 1968 as first position preference-21 percent compared to 38 percent. In

[^19]describing the trade off between predoctoral and postdoctoral employment by institutions, the report stated that '". . Many professors . . . shifted support in their project grants from predoctoral research assistants to full-time postdoctoral students, thereby expanding the number of posidoctoral positions., . . I In addition, some departmerts were able to combine several teaching assistantship salaries into one and change the position to accomodate a postdoctoral student instead. The report found that ". . . the postdoctoral appointment has become very diverse, ranging from highly coveted opportunities to work under eminent scientists to thinly disguised and poorly paid teaching appointments . . $"=$ a conclusion applicable to most disciplines. In 1977 these same characteristics appear to be ingrained in the hiring practices of universities, and the continued utilization of postdoctorates, especially in fields where R\&D expenditures are accelerating, seems to be assured.
Posidoctorates receiving some form of Federal support accounted for 69 percent of the 1977 total, down slightly from 71 percent in 1974. The number receiving Federal fellowships or traineeships, or working on Federal research projects. grew by 15 percent during the 1974-77 period, while those receiving other forms of support grew by a total of 27 percent. Between 1976 and 1977 a decided shift in the growth pattern occurred that could
account for this difference. The rate of increase in federally supported postdoctorates dropped sharply, while the rate accelerated for those depending on other forms of support (appendix table B-27 and chart 27).
The working relationship that develops in a university research community can be illustrated further by an examination of the growth trends in postdoctoral appointments, graduate research assistants, and academic $R \& D$ expenditures in terms of the sources of support received. The 15 -percent overall growth in postdoctorates receiving Federal support between 1974 and 1977 occurred simultaneously with a 13 -percent overall rise in federally supported graduate research assistants and a constant-dollar rise of 6 percent in Federal R\&D funding to doctorate-granting institutions. For each of these indicators of Federal research support, the rate of growth decelerated between 1976 and 1977, but not enough to affect the overall expansion pattern markedly.
The extent of the influence of foreign postdoctorates on the academic employment scene has not been measured comprehensively since 1967, when the NRC conducted a survey of the characteristics of postdoctorates on a national scale. ${ }^{4}$ The 1967 study revealed that 81
"Natienal Researeh Coucil. The Invisible Universily (Washington, D.C., 1969) tables 5 and 27.

percent of all postdoctorates in the United States held academic appointments; the remaining 19 percent were distributed among nonprofit institutions, the Federal Government, and private industry. In academic institutions, 49 percent of the postdoctoral appointees in 1967 were from foreign countries. In 1977, when NSF collected data on foreign postdoctorates for the first time, the proportion employed in graduate S/E disciplines of doctorate-granting institutions amounted to only 32 percent. Of the 6,200 foreigners
employed as postdoctorates in universities in fall 1977, over 3,500 , or 57 percent, were assigned to life sciences departments, considerably below the U.S. citizen percentage of 70 percent in these same departments. In contrast, in engineering and the physical sciences postdoctorates from abroad constituted a higher percentage than did U.S. citizens (appendix table B-28).
While the number of postdoctoral positions in science and engineering has risen 18 percent in universities
between 1974 and 1977, along with professional S/E employment at all levels in academic institutions, there are indications of a shrinking personnel pool from which these new postdoctoral appointments are coming, as discussed earlier. The number of doctorate recipients in science and engineering dropped from 19.500 in June 1972 to 18,300 in June 1977, or by nearly 7 percent. ${ }^{35}$

[^20]
part 3.

trends in graduate science enrollment

general characteristics, 1974-77

Paralleling the growth pattern of current expenditures for academic research and development and employment of scientists and engineers, enrollment of graduate students in S/E programs also rose in the period 1974-77. This section presents a statistical portrait demonstrating the factors at work that influenced the size of the graduate science student pool during the years for which the data from a compatible data base exist. ${ }^{37}$ The two previous sections examined six years in the midseventies; the following analysis concentrates on only four years, 1974 through 1977, because of the limiting features of data on the earlier years' population, as described in the technical notes.
The cyclical patterns of growth and retrenchment in graduate science enrollment that have characterized this population since the sixties are influenced by complex interacting forces; no single

[^21]
element is responsible for the many directional shifts that take place and no causal relationship can be traced to any one factor. Job market conditions, the economy in general, affirmative action efforts, tuition costs, the draft, demographics, personal taste-all play a role in individual, institutional, and govern= mental decisionmaking.' The size of the S/E enrollment pool at the graduate level is thus difficult to predict or explain. This section will present descriptors of the characteristics of this group and some of the factors that determine the size of the supply from which the Nation's scientists are drawn.

Since doctorate-granting institutions enrolled about 85 percent of the graduate science student population, accounted for 98 percent of the $R \& D$ expenditures of institutions of higher education, and employed 68 percent of the scientists and engineers, this section will concentrate on the characteristics of these institutions.

enrollment and degree patterns

The "mix" of science-to-nonscience enrollment at the graduate level changed somewhat between 1974 and 1977 (appendix table B-29 and chart 28). In the earlier year. S / E graduate students

accounted for 22 percent of all graduate enrollment; by 1977, their share had risen to 28 percent. During this time, graduate enrollment in all fields declined by 9 percent, so that in 1977 it represented less than 10 percent of all resident and extension enrollment, down from 12 percent in 1974 (chart 29).

During a general period of graduate S/E enrollment growth, academic employment of scientists and engineers in graduate institutions rose also. Master's institutions added over $\mathbf{5 , 1 0 0}$ scientists and engineers to their employment roles (up 15 percent in four years), and doctorate institutions added 18,900 (up 10 percent) (appendix table B-30 and chart 30).
Even though undergraduate enrollment grew in all fields between 1974 and 1977, the total number of baccalaureates and first-professional degrees awarded dropped slightly; undergraduate S/E degrees also dropped by 5 percent (appendix table B-31 and chart 31). If the addition of over 21,000 health science degrees, however, were combined with the loss of over $16,500 \mathrm{~S} / \mathrm{E}$ degrees, the net effect would be a 1 -percent growth in the 1974-77 period in bachelor's and first-professional degrees in sciencerelated fields. The same would be true of master's degrees-over 13,000 master's degrees in health were awarded in 1977, 3,300 more than in 1974. When coupled

[^22]

supply had been achieved ir The traineeship programs ft late sixties that were desi courage graduate students such careers were phased ou ship and traineeship func dwindle. These were the mechanisms by which Fede have contributed heavily port of graduate S/E stude their utility and availability research assistantships be widely used mechanisms fi student support. An examin funding history of fellowshi ships, and training grants a Federal agencies for gradui S/E disciplines revealed a sh in current dollars between 1971, the beginning of the c and fiscal year 1977"n (appe

[^23]
tfields.
1 in the to enpursue fellow gan to tional !encies e supand as nished, more Iduate of the aineeled by ork in ecline 1 year ieries, table
urvey of - Enกับล

B-33). The aciual dropoff was even greater in real terms. Two factors probably accounted for the downturn in real dollars-the erosive nature of inflation and the funding lag between the time the funds were obligated and the time the funds were spent.

Thus, toward the end of the seventies direct student aid from Federal agencies played an increasingly minor role in the support of graduate S / E students. Earlier, in 1967, the height of Federal visibility in terms of the relative share of graduate S/E fellowships and traineeships supperted. 73 percent of full-time S/E graduate fellows-trainees depended on Federal support . 39 By 1977, only 50 percent of these students received such

[^24]financial aid through fellowships and traineeships.

During the same period when Federal dollars for direct graduate student aid diminished (1971 to 1977), agencies increased their indirect assistance to students through the growth in funding of academic research and development, as shown in part I (appendix table B-6 and chart 4). Federally financed R\&D expenditures at universities and colleges rose an average of almost 1 percent per year above the rate of inflation between fiscal years 1972 and 1977, contributing to the creation of a growing number of federally supported research assistan!ships. Because of this trade off between direct and indirect support of graduate science students, the net effect was a turnaround in the total number of federally supported students between 1974 and 1977. Doctorate-granting institutions reported accelerating rates of growth in each of these years, for an overall rise in federally supported students of 5 percent over 1974 totals (appendix table B-34 and chart 33). Thus, the number of graduate S / E students receiving some form of Federal support reached 50,300 in 1977, or 23 percent of the full-

time total. Even though R\&D financing by Federal agencies spurred such growth, the Federal share of student support in 1977 was still below that of 1971, when 31 percent received Federal aid to pursue graduate work full time, ${ }^{\text {s1 }}$
The shift to federally supported research assistantships has been gradual. In 1971. this form of aid was available to 42 percent of those receiving some form of Federal assistance; by 1977. the proportion had risen to 50 percent. Concurrently, the use of fellowships and traineeships by Federal agencies for the support of graduate students dropped from a 51 -percent share of those receiving Federal assistance in 1971 to 39 percent in 1977.
Past Federal policies toward student aid were aimed at the direct support of graduate S / E students, while current academic $R \& D$ funding policies affect them indirectly. New student assistance programs that took effect in fiscal year 1974 were designed instead to strengthen undergraduate education in all fields through loans and grants programs allocated on the basis of student and family financial need. In particular, the educational opportunity grants of the Office of Education have resulted in a wide dispersion of Federal obligations to about 2,700 institutions of higher education and reached nearly 2.9 million students in 1977."' These publicly funded assistance programs have been budgeted to reach over 3.2 million undergraduates by 1981 at a cost of over $\$ 2.7$ billion that year.

other sources of support

The 5 -percent rise in federally supported students mentioned above, while significant. was overshadowed by the 14-percent increase in students receiving financial aid from all other sources during 1974-77. Both institutional and State and local government support rose, reaching 80.500 siudents in 1977, or 37 percent of the full-time student total. An even larger gain in both absolute and relative terms

[^25]occurred in the number of students relying on their own and their families' resources for graduate training. Nearly 13,000 more self-supported students attended doctorategranting institutions in 1977 than in 1974. for an overall percentage gain of 23 percent that brought their total to nearly 69,000. With rising tuition and living costs, as well as increasing interest rates on educational and personal loans, this high rate of growth in numbers of students dependent on self-support showed signs c. : ring off.

mechanisms of support

In 1977 about 61 percent of the S / E stadents enrolled full time received some form of graduate assistantships, either fellowships, traineeships, research. or teaching assistantships, an increase of 6 percent over the number in 1974. Those sludents receiving all other types of support, primarily selfsupport. grew by 21 percent. Of all mechanisms of support, fellowship and traineeship-holders grew at the lowest rate (only 2 percent), while research assistantship-holders rose by 11 percent, fueled by the rise in academic R\&D spending discussed earlier (appendix table B-35 and chart 34). Teaching

assistantships were available to 5 percent more students in 1977 than in 1974.

women in graduate science programs

The increase in the number of women preparing for careers in science and engineering by enrolling full time in graduate S/E programs has been rapid between 1974 and 1977, up 37 percent to a total of 63,700 . Nearly 17,000 more women attended graduate schools of doctorate-granting institutions in 1977 than three years earlier. In contrast, the net growth in the number of men was up only 4 percent to 154,500 .

In 1976 and 1977, men registered slight losses, with a decline in graduate study in engineering and the life and social sciences between 1975 and 1976 and another decline in psychology and the mathematical and social sciences the following year. Only the environmental sciences showed an increase in male graduate enrollment for three successive years. For women, only one field, mathematical and computer sciences, showed a downturn between 1976 and 1977, but its effect on the total number was slight (appendix table B-36 and chart 35).

Women's strong interest in science and engineering was demonstrated further by the growth in the number of S/E doctorates they received between 1974 and 1977*: (appendix table B-37.) The number granted to women rose from 14 percent of the total S/E doctorates to 18 percent in a few short years, and every field of science enrolled a larger share of women in 1977 than in 1974. In two areas, the environmental and social sciences, doctorate awards dropped between 1976 and 1977, but the net loss was not enough to affect the total rise.

In parallel with this strong advance in both graduate science training and in doctorate-holders between 1974 and 1977, the number of women enrolled in undergraduate programs in all fields increased significantly, from 2.3 million to 2.9 million, or by 26 percent. The number of men rose at the undergraduate level also but at a slower pace, up from

[^26]

ERTC

2.8 million to 3.1 million, or by 11 percent. ${ }^{\text {an }}$ In 1977 the life sciences drew the highest proportion of women into graduate study and the social sciences ranked next. In terms of doctorate degrees awarded to women, more were awarded in 1977 in psychology than in any other field; the life and social sciences were next in order. In the 1978 labor force the life sciences ranked first in the number of women employed, followed by the mathematical and computer sciences (appendix table B-38 and chart 36).

foreign students

Although students from foreign countries represented only 2 percent $(235,500)$ of the 11.4 million students enrolled in all U.S. institutions of higher education in 1977, their numbers have grown by 52 percent since 1974.44 In graduate S / E programs, foreign students enrolled full time increased 16 percent in the same period to a total of 37,000 . In spite of this rise, foreign students accounted for only 17 percent of the 1977 full-time graduate science student total, about the same proportion reported by doctorate-granting institutions 10 years earlier. ${ }^{4 .}$

Engineering ranked first in S/E enrollment choice by foreign graduate students in 1977, as it did in each of the three preceding years. For U.S. citizens, engineering ranked third, behind the life and social sciences. In every major S/E field, institutions reported foreign student growth, so that the total number increased each year of the period. Growth in U.S. citizen enrollment slowed markedly in both 1976 and 1977 after a 1974-75 surge, so that total percentage growth between 1974 and 1977 was 11 percent, raising the 1977 total of U.S. citizens to 181,200 (appendix table B-39 and chart 37).
Enrollment data recently made available on all nonresident aliens as reported by institutions of higher education to NCES showed an increase of 15 per-

[^27]
cent between 1976 and 1978 . ${ }^{48}$ The impact of these students was greater at the graduate than the undergraduate level, and because of this trend. NCES predicts that colleges having graduate programs may be in a better position to adjust to the estimated declines in U.S. citizen enrollment expected in the eighties. Engineering fields drew nearly 20 percent of the national enrollment total of all nonresident aliens, up slightly from 18 percent in 1976, and was the area in which the highest proportion of bachelor's, master's, and doctorate degrees was awarded in academic years 1975 and 1976.
Publicly controlled institutions enrolled
"Department of Health. Education, and Welfare National Ceñter for Education Statistics, bulletin entilled, "Nonresident Alien Enfollmeñis and Degrees are Increasing." (NCES 80-B05). March 19. 1980, based on fall enrollment ind compliance report of insititutions of higher education, 1976 and 1976.

69 percent of the forei students in 1977 compart of the U.S. citizens. L regulations require tha demonstrate their financ before they are admitt they are not permitted hours per week in par hope of cutting expen: why such a high percen institutions. While no d available on the sourc foreign graduate scien 1977-78 survey of all fos the U.S. found that the of support of 63 perc enrolled in higher educ personal and family res the last year that NSF c sources of support of f_{1}

[^28]
uate S / E '3 percent nigration students pendence udy, and k over 20 obs. The - explain se public surrently pport of ents, the idents in y source he total me from ${ }^{\prime}$ In 1973. I data on raduate
p. cit. table

S/E students, institutions reported that only 22 percent of foreign S / E students relied on their own resources for support; the institutions and Federal agencies supported about 60 percent. ${ }^{19}$

parì-time graduate science enrollment in doctoralgranting institutions

In 1977 the part-time component of enrollment at all levels of higher education amounted to 40 percent; at the graduate level, it amounted to a much higher proportion, over 60 percent. ${ }^{49}$ In the S/E

[^29]
disciplines, however, only 29 percent were enrolled in graduate departments on a part-time basis, or about one-half the share typicai of the graduate level in all fields (appendix table B-40 and chart 38).

Further differences were evident in the rates of change between part-time graduate enrollment totals and the number in S/E programs. Although part-limers in all graduate fields declined in 1976 and 1977 and showed an overall loss of 15 percent, those in S/E programs rose for three successive years for a gain of 26 percent, reaching a total of 88,500 students by 1977 (appendix table B-41 and chart 39).
The life sciences accounted for 40
percent of this net growth, adding nearly 7,300 part-timers between 1974 and 1977. Much of this incremental growth occurred in the health sciences, primarily in nursing and preventive medicine. Students employed full time in such health science occupations frequently enroll for advanced degrees on a part-time basis in order to upgrade their credentials and attain higher levels of certification. Engineering fields accounted for 35 percent of the 1974-77 net growth in part-timers, with industrial engineering showing the largest gain. Several fields showed signs of a cutback between 1976 and 1977, particularly the physical sciences, down 5 percent, and psychology and the mathematical sciences, down 2 percent each.

appendixes

A. Technical Notes
B. Statistical Tables
C. Survey Forms and Instructions

appendix a

technical notes

This report presents data that were collected in three NSF annual surveys of academic science resources covering the following time periods:

1. Scientific and Engineering Expenditures at Universities and Colleges, FY 1972 through FY 1977
2. Scientific and Engineering Personnel Employed at Universities and Colleges, January 1973 through January 1978
3. Graduate Science Student Support and Postdoctorals. Fall 1974 through Fall 1977
In terms of the reporis. . iod of respondents in these surveys, each differs according to NSF survey concepts and institutional recordkeeping practices. The R\&D expenditure data are reported according to established institutional financial accounting practices. In most instances, records are maintained on the basis of the institution's fiscal year (i.e., the year ending in July or in October) or of calendar years. The survey of scientific and engineering (S / E) personnel is mailed to respondents in January, but the date that institutions use to supply data differs, depending again on established practices. For many public institutions with State reporting requirements, the NSF data are based on personnel files compiled the preceding fall. Others report as of January or whenever they "lock in" their personnel files for annual administrative reporting purposes. The graduate student and postdoctocal headcounts are based on data compiled at the opening of the fall semester.

Data collected through the institutional survey system instituted by NSF have been integrated into a commoncoded computerized data base to permit greater accessiblity and subsequent dissemination. A compatible coding structure allows the data user to make institutional and field-of-science comparability studies not usually possible from other data sources.

As part of its continuing effort to reduce respondent reporting burden, NSF converted its data collection efforts from an annual to a biennial cycle beginning in fiscal year 1977. A fullscale survey format using a "long" form is mailed in odd-numbered years to all institutions having S/E programs. while in alternate years only key data elements printed on "short" forms are collected from doctorate-granting institutions. The current consolidated report analyzes the results from the three above-named surveys in their 1977 longform cycles and will be produced in the future on a biennial basis.

survey of scientific and engineering expenditures at universities and colleges, fy 1977

On December 2. 1977, survey questionnaires were mailed to 539 univer= sities and colleges and 21 universityadministered federally funded research and development centers (FFRDC's). Essentially the same criteria in 1977 were used in establishing the survey universe that were employed for the fiscal year 1975 and 1976 surveys. The
universe included all academic institutions granting graduate degrees in the sciences or engineering, and all other universities and colleges with over $\$ 50,000$ in $R \& D$ expenditures. The 21 university-administered FFRDC's were surveyed separately.
The R\&D expenditures reported by this survey's 539 universities and colleges are estimated to account for over 99 percent of all academic R\&D spending. Information gathered from the 1972 survey, when over 1,600 additional universities and colleges were surveyed, indicated that all other institutions of higher education accounted for less than 1 percent of total R\&D spending.
Five and one-fourth months after the mailout (May 10, 1978), 96 percent of the institutions, including the 100 leading $R \& D$ performers in the academic sector, had responded with usable data. This excellent response rate, achieved in part by improvements in data processing techniques, facilitated publication of the final data tabulations in Scientific and Engineering Expenditures at Universities and Colleges, Fiscal Year 1977 (Detailed Statistical Tables) (NSF 78-311) by August 1978, 8 months from the initial mailout of the questionnaire.

imputation for nonresponse

Twenty-three institutions failed to respond to the survey questionnaire and a machine imputation program was developed to provide estimates for these institutions. The imputation program for nonrespondents was based on detailed summary data according to respondent institution characteristics
(level of degree granted and type of control) to determine inflation or deflation factors. These factors were applied to the previous years' responses to create estimates for nonrespondents. $R \& D$ estimates for nonrespondents totaled $\$ 79$ million. or 1.9 percent of the $\$ 4.0$ billion universe total. Only 8 doctorate-granting, 10 master's-granting, and 5 bachelor's-granting institutions failed to respond to the FY 1977 survey.
A detailed account of the imputation results is given in table A-1. which combines both machine-imputed totals and those estimated by NSF. Previously, this table did not incorporate NSF estimates for some nonrespondent institutions. Generally, these NSF estimates were used to distribute R\&D spending by character of work.

response analysis and data quality

NSF has identified certain areas in which efforts have been undertaken to enhance the quality of statistics. One particular area is the reporting of the institutional contribution toward organized research activities. The category "institutional funds." a source of R\&D support item, is comprised of several elements. These include separately budgeted expenditures funded from such sources as unrestricted endowment income and unrecovered indirect costs and cost sharing of R\&D projects sponsored by outside agencies. While most institutions can report from their accounts expenditures from such sources as endowment income, estimates are usually required for data on unrecovered indirect costs and cost sharing. As a result, NSF has redesigned its

Table A-1. Academic R\&D expenditures survey response rates by type of institution: FY 1977

Type of institution	Number surveyed	Number of respondents	Percent of total
Total	539	516	95.7
Doctorate	287	279	97.2
Master's.	177	167	94.4
Bachelor's and no science degree	75	70	93.3

Source: National Science Foundation.
survey forms and instructions and taken other steps to upgrade the quality and consistency of reporting of the "institutional funds" data.
The reporting of basic research is one of the most important components of the expenditure survey. These data are of particular interest to Federal planners since over one-half of the total U.S. basic rasearch performance occurs in academe. Neveriheless, relatively few universities have recordkeeping systems which can reveal precise data on the character of research. As a result, many institutions are forced to estimate this item. More precision may be possible in the future, however, as a number of large research performers have made provisions to have principal investigators code their projects at the time of a ward as either basic or applied research.

When referring to Federal funding of academic research and development, it is well to keep in mind that a university's perspective may differ from that of a Federal agency in terms of how R\&D projects should be categorized. In NSF's survey of separately budgeted $\mathrm{R} \mathrm{\& D}$ expenditures, the institution is asked to distribute $R \& D$ funds accord . ing to the performer's intent as to character of work, i.e., whether basic, applied, or development. From the institution's point of view, a project could be classified as basic research based on the NSF definition, while the same project could be considered applied by the sponsor, whose purpose may be dictated by issues related to its own mission. In the NSF annual Survey of Federal Funds for Research and De-
velopment, agencies classified just over one-half of their 1977 academic R\&D obligations as basic, while the performers responding to the institutional survey labeled three-fourths of their 1977 federally financed $R \& D$ expenditures as basic research, as illustrated in table A-2.

Additional questions regarding the findings from the Survey of Scientific and Engineering Expenditures at Universities and Colleges should be addressed to James B. Hoehn or Marge Machen, Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, National Science Foundation, Washington, D.C. 20550 (202-634-4673). Data tapes for FY 1977 and prior years may be purchased from:

> Moshman Associates. Inc. 6400 Goldsboro Road Washington, D.C. 20034
> (301) 229-3000

survey of scientific and engineering personnel at universities and colleges, january 1978

Gurvey questionnaires were mailed in mid-February 1978 to more than 2,200 institutions of higher education and 21 university-administered FFRDC's. The survey universe included all institutions of higher education, including 2year institutions, that were identified by NSF as offering degree=credit courses in either the sciences or engineering.

Table A-2. Distribution of Federal academic R\&D support by character of work and survey respondent: FY 1977

(Dollars in mililions)

Character of work	Institutional responses to the Survey of Scientific and Engineering Expenditures at Universities and Colleges		Agency obligations reported to Survey of Federal Funds for Research and Development	
	Armaunt	Percent distribution	Amount	Percent distribution
Federal academic R\&D support, total \qquad	\$2,7:7	100.0	\$2,905	100.0
Basic research	1,992	73.3	1.547	53.2
Applied research	605	22.3	1,042	35.9
Development	120	4.4	316	10.9

Source: National Science Foundation.

At the survey closeout date in late August 1978, the survey population included 2,228 universities and colleges and 21 university-associated FFRDC's. This adjustment reflected curriculum modifications (i.e., openings or closing of courses in science or engineering) as well as changes in the institutional population. Of this total, 1,763 (79 percent) responded, compared with an 87 percent response rate for the previous year. General expressions of concern about "paperwork burden" and in creased workloads of academic support staff appear to have contributed to the decline in the response rate. While several items were added to the 1978 survey form which increased its complexity. NSF has reduced the size and complexity of forms in subsequent surveys.
The majority of nonrespondents were small institutions, primarily 2 -year institutions. Arnong the approximately 300 Ph.D. \quad grañling institutions that accounted for virtually all academic research as well as nearly two-thirds of all academic scientists and engineers, only 36 were nonrespondents. Hesponse rates are shown in table $\mathrm{A}-3$.

estimates for nonresponse

Estimates were made for institutions that failed to respond to the survey in order to provide overall national totals of academic employment of scientists and engineers. These "imputations" for nonrespondents were based primarily on key item totals reported (or estimated) in the prior survey year. Totals for these institutions were inflated or deflated according to overall

> Table A-3. Scientific and engineering personnel survey response rates by type of institution: January 1978

Type of institution	Number survayed	Number of respondents	Percent of tótal
Tote!	2,228	1,763	79.1
Doctorate	308	272	88.3
Master's. .	297	261	87.9
Bachelor's and noscience degree \qquad	1,623	1,230	75.8

Source: National Science Foundation.
rates of change for data supplied by respondents at the same degree level and the same type of governance (public or private). Detailed imputations were then made on the basis of the distribution computed for similar institutions.
The largest imputation rates were for data collected on an item introduced to the 1978 survey which covered FTE scientists and engineers employed in separately budgeted R\&D activities. For instance, the imputation rate was 35 percent for the FTE distribution of headcount data on scientists and engineers involved in R\&D activities. Since questions on FTE involvement in R\&D activities by detailed discipline were newly added to the form in 1978, a number of institutions had not yet designed or developed information systems to supply these estimates. Also. some may have found it difficult to separate departmental research from separately budgeted activities. As Federal and State reporting requirements for research involvement of faculty are broadened, it is expected that the quality of data on FTE's in research and development will improve in subsequent survey years.

response analysis and data quality

The data systems used to complete the NSF personnel survey are becoming more centralized and more automated. A postenumeration study of 45 institutions conducted in 1978 found that three-fifths of a sample of large research universities used computerized payroll or management information systems to complete this form compared with only 40 percent in an NSF evaluation study done in 1973. It was found in the 1978 study that nearly one-half of the sampled institutions used multiple sources to supply data for all questionnaire items. These various record sources inevitably lead to some inconsistencies among institutional responses.

The principal area of reporting variance occurs in the request for universities to classify the extent of professional involvement in R\&D activities. Because centralized records usually do not carry

[^30]entries of $R \& D$ involvement, various decentralized reporting practices are common. Among them are estimates made byֶ research administrators, graduate deans, department chairpersons, or surveys of faculty. Some institutions use time and effort data obtained frominternal surveys of faculty while other institutions base their estimates on the relation between income from organized research and faculty salary structures.

Requests for additional information concerning the personnel survey findings should be addressed to Mr. James Hoehn or Mrs. Esther Gist, Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, National Science Foundation, Washington, D.C. 29550. (202) 634-4673. Data tapes for January 1978 and prior years may be purchased from:

Moshman Associates, Inc. 6400 Goldsboro Road Washington, D.C. 20034
(301) 229-3000

survey of graduate science student support and postdoctorals, fall 1977

Mailout of the fall 1977 survey was completed on December 5. 1977, to 371 reporting units or schools at all S/E doctorate-granting institutions and 328 S/E master's institutions. The survey was closed out on June 22. 1978, with a near 100 -percent institutional response rate among doctorate-granting institutions. Only one institution failed to respond. Among the master's institutions, three were unable to participate in the survey during 1977, nor did they respond in 1976.

imputation for nonresponse

Missing data were imputed based on the previous year's response for the 33 departments at the one nonrespondent doctorate institution. In addition, another 11 departments required full imputalion, and 9 received partial imputation, Only three departments not responding to the 1977 survey were also nonrespondent in 1976 and thus were not included in the tabulations.

At master's institutions, 10 departments were fully imputed based on their

Table A-4. Graduate science students and postdoctoral survey response rates by type of institution and departmeat: Fall 1977

Type of institution	Institutions			Departments		
	Number surveyed	Number of respondents	Percent of total	Number surveyed	Number of respondents	Percent of total
Total	699	695	99.4	9,513	9,281	97.6
Doctorate	371	'370	99.7	7,951	7,898	99.3
Master's.	328	325	99.1	1,562	1.383	88.5

'Branch campuses and medieai schools were considered separate reporting units for some institutions:

Source: National Science Foundation

previous year's response and another 169 departments required partial imputation to complete the dataitems requesting a breakout on major sources of support or sex of students. Response rates are shown in table A-4.

response analysis and data quality

Two national studies have been conducted to determine reporting practices and data quality of the Survey of Graduate Science Student Support and Postdoctorals. One was conducted in 1974 and involved personal visits and structured interviews at a sample of 30 inst $\mathrm{i}-$ tutions and $120 \mathrm{~S} / \mathrm{E}$ departments. ${ }^{.}$The second was undertaken in 1978 and covered campus interviews at a sample of 45 major research universities. ${ }^{\text {² }}$
The results from the two national studies corresponded closely. Among the findings was that the Survey of Graduate Science Student Support and Postdoctorals is much more decentralized in reporting practices than the other two annual surveys of academic institutions covering $R \& D$ expenditures and S / E personnel. In the graduate student survey, one form is sent to NSF by each graduate department that is designated as a "science and engineering" program. Typically, when these forms are sent to institutions at the beginning of a survey, the NSF coordina-

[^31]tor in the office of the graduate dean sends each form to specific departments for accumulation of data and completion. All of the institutions in the response analysis studies used this reporting procedure in one way or another-either to obtain data on numbeis of graduate students, their enrollment, demographics, and income characteristics. or to acquire similar statistics for postdoctorates.
Departmental respondents use varying methods to assemble the NSF graduate student and postdoctoral data. The most prevalent procedure is to prepare lists of individual graduate students and postdoctorates with associated data on funding sources and enrollment characteristics. Other departments may use existing information from the university's centralized management information system or from fellowship and traineeship applications, letters of intent, payroll forms, application and admission forms, etc. Many of them base their reports on "personal knowledge" of the person filling out the form, especially in departments with small enrollment. Since most departments have to compile their own data base, the degree of accuracy probably depends largely upon their understanding of the importance of these national statistics for policy and planning.

The reason for the highly decentralized reporting procedures used in the NSF graduate student survey are both traditional and conceptual. Originally, the departmental forms were designed to obtain basic data as part of the NSF Graduate Traineeship Program. Departments were required to submit reports to NSF to qualify for these traineeships.

When the NSF Graduate Traineeship Program was largely abolished in 1971, the data continued to be collected as part of a statistical survey and most institutions continued to compile them on the same basis as before. Conceptually, some of the data requested by NSF can only be reported at the level of departments with any degree of accuracy. Although central records contain most of the data in many institutions, only departments know about sources of graduate student support that do not go through payroll records or other administrative units of the university (i.e., stipends such as company support, private foundation awards, and family support of individual students). In addition, central records of many institutions are extremely weak in terms of their ability to report data on postdoctorates with reasonable reliability,
Requests for additional information concerning the graduate student survey findings should be addressed to Mrs. Susan G. Broyles, Universities and Nonprofit Institutions Studies Group. Division of Science Resources Studies, National Science Foundation, Washington, D.C. 20550 (202-634-4673). Data tapes for fall 1977 and prior years may be purchased from:

Moshman Associates, Inc.
6400 Goldsboro Road
Washington, D.C. 20034
(301) 229-3000

data user guide

To introduce the potential user to the common-coded data base developed by the Universities and Nonprofit Institutions Studies Group, Moshman Associates, Inc. produces on a periodic basis a "Data User Guide." The January 1980 issue. Version 3, reflects the addition of FY 1978 survey data to the integrated data base and documents major changes to data structures that have occurred since FY 1977.
Copies of the "Data User Guide" may be obtained without charge from:

[^32]
appendix b

statistical tables

R\&D Expenditures
 Pege

$\mathrm{B}=1$. National R\&D expenditures by sector: 1972-79 (est.)29
B-2. Nātiónal baste research expenditures byperformer: 1972-79 (est.)29
B-3. R8D expenditures at universities and colleges by character of work: FY 1972-77 29
$B=4$. R\&D expenditures at universities and colleges by source: FY 1972-77 29

B-5. R\&D expenditures at universities and colleges by source, character of work, and field: FY 1972-7730
B-6. Federally financed R\&D expenditures atuniversities and colleges by characterof work and field: FY 1972-7731
B-7. R\&D expenditures at universities and colleges by institutionai control: FY 1972-77 31
$\mathrm{B}-\mathrm{B}, \quad$ R\&̊ D expenditures at universities and colleges by source, character of work, and Institưtional control: FY 1977 31

B-9. R\&D expenditures at universities and colieges by State: FY 1972-7732
$\mathrm{B}=10$. Federally financed R\&D expenditures at universities and colleges by State: FY 1972-7733

B-11. Relativa concentration of R\& Dexpendltures at leading doctorate-grañing insititutions by sourge: FY 1973-77
$\mathrm{B}=12$. Total and federaliy financed capital expenditures for scientific activities at universities and colleges by fleld: FY 1972-7734

B-13. Capital expenditures for scientific. activities at universities and colleges by source and institutional control: FY 1972-7735

Science and Engineering Personnel

$\bar{B}=14$: Doctorate recipients, 1972-77, and acadernic employment, 1973-78, by fièld 36
B-15. Projected full-time labor force of docto:al scientists and engineers byfield: FY 1977-8737
E-16. Scientisis end engineers employed at universities and colieges by type of institutioñ and status: Januâry1973-7837
$\mathrm{B}=17$. Scientists and engineers employed at universities and colleges by type of activity: January 1973-78 37
B-18. Doctoral scientists end engineers employed at universities and colleges by primary work activity: 1973=77 . . . , 37
B-19. Full-time scientists and engineersemplōyed et universities and collegesby fleld and sex: January 1974-78 . . . 38
B-20. U.S.sclentists and engineers by sex:1974-7838
$\bar{B}=21$. Unemployment rate of U.S. scientists and engineers by sex: 1974, 1976, 38and 1978
B-22. Doctoral scientigts and engineers in the U.S. by race: 1973 and 1977 39
B-23. Doctoral sclentists and engineersemployed át universitles and colleget,by field and race: 1973 and $1977:=.39$B-24. Unemployment rate of U.S. scientistsand englneers by race; 1974, 1976,and 197839
B-25. Scientists and engineers employed at universities and colleges by type: January 1975-78 40
B-26. Postdoctorates, graduateresearch assistants, end R\&D expenditures at unlversities and colleges by field: fall 1977 40
B-27. Postdoctorates, graduate researchassistants, and R\&D expenditures inacademic institutions in the sclencesand engineering by souree of support:Fall 1974-7740
B-28. Postdoctorates, by field, institutional control, and eitizenship: Fall 1977 41
Graduate Enrollment
B-29. Total graduate enrollment in Institutions of higher education by field: 1974-77 41
B-30. Graduate enrollment and academieemployment in the sciences andengineering by type of graduateinstitution41
B-31. Number of degrees granted by institu- tions of higher education by level and field: 1974-7741
B-32. Graduate science and engineering enrollment by status and field: Fall 1974-7742
B-33. Federal obligations to universities andcolleges for fellowshlps, traineeships,and training grants by fleld:FY 1971-7742
B=34. Full-time graduāte science andengineering enroiliment by source ofmejor support: Fall 1974-7742
B-35. Full-time graduate sclence andengineering enrollment by type ofmajor support: Fell 1974-7742
B-36. Full-time graduate selence aridengineering enrollment by sex andfleld: Fall 1974-7743
B=37. Doctorate recipients in science and engineering by sex and field: June 1974-77 43
B-36. Women in science and gngineering by field 43
B-39. Full-time graduate science and engineering enroilment by citizenshipand field: Fall 1974-7744
B-40. Total enroliment in institutions ofhigher education by status:Fall 197744
B=41. Graduate enroliment by status: Fall 1974-77 44

Table B-1. National R\&D expenditures by sector: 1972-79 (est.)
(Döllaris in millions)

Year	Total	Federal	industy	Nongreft instificions	Academic stetor	
					Universities and colloged	Associatod Findes
1977	S28,413	4-4,4929	519,539	* 952	52.677	5764
	30.615	4.619	21, 233	1,006	2,940	817
	32.734	4.815	22,867	1,164	3,023	鴣
1975	35.300	5.397	24,104	1,243	3×409	987
1976	36.848	5.710	26,938	1,323	3,730	1.147
	42.940	6.142	29, 533	1,417	4,094	1.384
	48,140 54,158	6.692	33,406	1,520	4,615	1.717
	54,151	7.522	37,700	1,750	5.340	1.840

1Federaly funded research and development centers. SOURCE: National Science Foundation

Table B-2. National basic research expenditures by performer: 1972-79 (est.)
(Dollars in millions)

Year	Total	Federal	Industry	Universities and collieges :	All other
1972........x....x.	*3.748	事 538	\$593	\$2,022	\$ 595
	3.877	537	631	2,055	6654
	4,144	611	699	2,153	681
1975 :.................	4,527	682	719	2,410	716
1976 : 1977e.e.,....,	4,881	719	817	2,547	798
	5,444	866	910	2,787	681
	6.292	1,047	1.040	3,185	1,020
1979 (est)	7,257	1,157	1.190	3,745	1,165

' Excludes federaly funded research and development centers (FFRDG's): SOURCE: National Science Foundation

Table B-3. R\&D expenditures at universities and colleges by character of work: FY 1972-77
(Dollare in millions)

Fiscal year	Basic research		Applied résearch		Development	
	Cument	Constent ${ }^{1}$	Cumbnt	Constant ${ }^{1}$	Cufrent	Constant'
$1972 \ldots$	\$2,022	\$2,022	\$ 544	3544	\$110	\$110
1973 .x...xi*	2,054	1,967	717	687	168	161
1974 .,	2,153	1,914	737	655	139	118
1975........	2,406	1,933	852	684	149	120
1975 :........	2.547	1,911	1,015	761	168	126
1977	2,788	1,959	1,067	750	209	147

' Eased on GNP implicit price defiator in 1972 dollars.
SOURCE: National Science Foundation

Table B-4. R\&D expenditures at universities and colleges by source: FY 1972-77
(Dollars in millions)

Fiscal yed	Total		Federal		Non-Federal	
	Current	Constant	Current	Constant'	Curient	Constant ${ }^{1}$
1972........	\$2.677	\$2,677	\$1,839	\$1,839	\$ 838	\$838
1973	2,940	2,816	2,036	1,952	902	884
1974	3.023	2,667	2,032	1,806	991	881
1975.......x	3,409	2,736	2,288	1,836	1,121	900
1976wn	3,730	2,798	2,501	1876	1,229	9292
1977	4.064	2,856	2,717	1,909	1,347	947

'Besed on GNP implicit price deflator in 1972 dollars.
SOURCE: National Scienca Foundation

Table B-5. R\&D expenditures at universities and colleges by source, character of work, and field:
FY 1972-77
(Dollars in thousands)

Source, charecter, and field	1972	1973	1974	1975	1976	1977
Total R80 sxpenditures :-.. , .x.	\$2,676.514	\$2.939,579	\$3,023,425	43,409,194	\$3,730,686	\$4,064,220
Souree of tunds:						
Federel Government	1,838,933	2.038 .206	2.032,143	2,287,779	2.501 .139	
State government$~$	257,068	280,880	+312,726	- 336.937	2,570.549	2,76,767
	12,850	14,510	14,038		15,219	162,255 13,400
Foundations \& voluntary health agencies	128,032	131,168	142,121	15,426 167,736	15,219 182,709	13,400 191737
Industry..	75,270	131,168 85,240	142,121 96.033	167,736	182,709	191.737
Instiutional funds ..., :-	305,520	319,247	350.575	397,746	123.519 435,272	139,149 517.681
Ali other outside sources n, , ,	58,839	70,328	75,789	90,312	102,281	517,681 123,231
Character of work:						
	2,022,185	2,054.044	2,152,669	2,408,057	2,547,494	
Applied research	544,178	717,041	737.360	852.048	1,014,893	1,067,421
	110,148	168,494	133.397	149.089	168,301	209,253
Field of science:						
	347,341	389.556	347,970	382,176	432.961	498,606
	329,900	330.431	333.851	350.745	379,123	426,699
Astronomy,	21,974	24:114	24,427	26.511	26,271	32,336
Chemistry...	110,015	114,133	116,026	120.976	140,041	163,522
	161,853	167.801	169,359	173.651	182,903	200,908
	36,058	24.383	24,039	29.507	29,908	29.923
Environmontal seiences	192,331	209, $\mathbf{E}^{4} \mathbf{4} 5$	235,186	255,301	206,532	317,035
Mathernatical and computer sciencess	70, 536	74.692	76.839	85,466	86,605	106,329
	NA	36,954	37.642	39,861	42,367	51,183
	NA	37,736	39,190	45,605	44,438	55,146
	1,352,601	1,529,265	1,631,574	1,900,486	2,098,913	2,256,782
	451.239	557,493	511.311	631,363	710.444	769,097
	' 231.057	' 275.552	346,209	382,120	411,265	464,428
	604,987	645,687	716,060	811,545	896.262	948,273
	65.318	50,553	57,974	75,458	80.942	74,984
Psychology	70,400	73,856	74,392	79.942	77,166	83,014
Social sciences :...	206,344	232,180	241,141	256,633	266,855	269,481
Economics, \times,	46,586	47,806	47,961	56,245	65.592	70,206
Political science .n, memommen.....................	21,771	25,523	27,123	29,500	28.389	32,495
Sociology ..	59,475	61.521	63,575	68,798	66,079	61,256
	78.512	97,330	102,482	102,090	106.795	105,521
	107.058	105,934	82,479	98,445	102;333	106,284

' Estimated, based on data collected in 1974.
NA-Not aväilable
SOURCE: National Science Foundation

Table B-6. Federally financed R\&D expenditures at universities and colleges by character of work and field: FY 1972-77
(Dollars in thousands)

Character and fipld	1972	1973	1974	1975	1976	1977
Total	\$1,038.933	\$2,038,206	\$2.032,143	\$2,287,779	\$2,501,139	\$2,716,767
Charactèr of work:						
Basic research :, ..	1,420,198	1,455,441	1.521 .841			
Applied fesegareh	1338.425	$1,455,441$ 462.437	$1,521,841$ 439,196			1,992,135
Development	80,310	120.328	439,198 71,104	516.062 78.073	580,638 $\mathbf{9 3 , 4 1 6}$	$\begin{aligned} & 604,783 \\ & 119,649 \end{aligned}$
Field of sciences:						
Engineering	259,055	267,094	240,063	260,154	290.689	336,211
	367,392	270,383	270.190	285,002	303.868	340,724
	16,854	17,697	17.101	19.524	18,251	23,133
Chemistry \qquad Physics	84,582 139,689	66,861	88.692	92,706	107,216	124,323
	139,629 26,327	146,224	146,515	149,879	155,346	171,118
Other, neec.e.	26.327	19,601	17,882	22. ${ }^{\text {¢ }} 93$	23,053	22,150
Environmental sciences	142,110	157,627	163,434	180,676	210,286	236,830
Mathernatical and computer sciences :..........	53,207	55,487	58,103	65,100		
Mathematics \qquad	NA	28,557	29.405	31,221	65,205 32,334	77,378 39,900
	NA	26,930	28,698	33,879	32,671	37,478
Life sciences	884.212	1.014,279	1,052,663	1,237,655	1.373 .928	
Biological sciences , \% \%	319,625	398.924	+366,021	+ 457,471	$1.37,926$ 520,216	$1,466,629$ 572,338
Agricultural sciencesst.enter............	' 80.228	193,854	100,952	112,175	- 121,654	512,338 134,236
Medieal sciences	448.805	485,962	543,663	613,798	673,305	706,147
	35,554	35,539	42,027	54,211	58753	53,908
	54,865	53,649	58,554	61,193	56,317	62,313
Social sciences, =s-6...................:	113,935	132.470	136,731	141.452		
	20,940	22,776	22,292	27,081	29,081	139,285 31,021
Political science	8.592	10,362	11,902	12,287	11,984	14,929
	35,694 48,709	40,486	41,295	45,000	40,355	37,289
	48,709	58,846	61,242	57,084	58,193	56,046
Other sciences, n.e.c.	64,154	62,217	47,405	56,547	59,233	57.397

'Estimated, based on data collected in 1974 , SOURCE National Science Foundation

Table B-7. R\&D expenditures at universities and colleges by institutional control: FY 1972-77
(Dollars in millions)

Fiscal year	Publie		Ftivate	
	Cursent	Constant ${ }^{\prime}$	Cutiont	Constant'
172	\$1,621	\$1,621	\$1,055	\$1,055
	1,805	1.729	1,135	1,087
174	1,912	1,700	1,111	9888
175.	2,181	1,750	1,228	988
	2,412	1,810	1,318	989
177 , estan.........	2.641	1.856	1,424	1,000

${ }^{\prime}$ Based on GNP implicit price dellator in 1972 dollars. SOURCE: Nationāl Science Foundation

Table B-8. R\&D expenditures at universities and colleges by source, character of work, and institutional control: FY 1977
(Dollare in millions)

Souree and eharacter of work	Total	Public	Private
Totaleneremetere:	\$4,064	\$2,641	\$1,424
By source:			
Federal \qquad Non=Federal	$\underline{2,717}$	1,613	1,103
By character of work:			
Basic rnamich	2,788	1,634	1,154
Applied tesaarch	1,067	831	237
	209	176	33

SOUACE: National Seience Foundation

Table B－9．R\＆D expenditures at universities and colleges by State：FY 1972－77
（Dollars in thousands）

Divition and state	1972	1973	1974	1975	1976	1977
	\＄2．676．511	\＄2，939．579	33，023，425	53，409，194	\＄3，730，688	4，064，350
	326；824	334，419	293，209	330,513	361，36］	403，153
Connectieut \qquad Maine Magenchustite \qquad Atow Hampenire \qquad Fincole lifland Vermont	$\begin{array}{r} 54,010 \\ 5,585 \\ 295,054 \\ 7.659 \\ 17,547 \\ 6,469 \end{array}$	$\begin{array}{r} 53.566 \\ 6.669 \\ 244,230 \\ 6.774 \\ 15,269 \\ \overline{7}, 277 \end{array}$	$\begin{array}{r} 54,482 \\ 7,115 \\ 302,921 \\ 7.273 \\ 13,585 \\ 7.873 \end{array}$	$\begin{array}{r} 62,673 \\ 8,759 \\ 325,699 \\ 10,063 \\ 15,730 \\ 10,589 \end{array}$	$\begin{array}{r} 71,595 \\ 9.63 \\ 239,640 \\ 11,963 \\ 16,166 \\ 12,167 \end{array}$	$\begin{array}{r} 79,348 \\ 9.937 \\ 365,490 \\ 13,705 \\ 61.543 \\ 13.130 \end{array}$
	485	530，807	54， 4 4，${ }^{5}$	606.774	6 650.245	696：890
 Penñsytuania	$\begin{array}{r} 46,475 \\ 309.110 \\ 139,615 \end{array}$	$\begin{array}{r} 49,201 \\ 348,691 \\ 132,715 \end{array}$	$\begin{array}{r} 54,453 \\ 344,506 \\ 150,536 \end{array}$		$\begin{array}{r} 54,321 \\ 408,781 \\ 197,143 \end{array}$	$\begin{array}{r} 59,040 \\ 435,799 \\ 202,041 \end{array}$
	428．537	475，258	499， 617	546，205	591，295	631.773
Ilinoing \qquad Îndiaña \qquad Michngan \qquad Ohié Mo $=\cdots$ \qquad	$\begin{array}{r} 123,525 \\ 51,160 \\ 97,837 \\ 72,734 \\ 83,281 \end{array}$	$\begin{array}{r} 133,921 \\ 54 ; 681 \\ 112.375 \\ 77,156 \\ 97.525 \end{array}$	$142.14 \overline{5}$ $5 \overline{7} .67 \overline{7}$ 108，047 02，153 9 96.5	$\begin{array}{r} 150,071 \\ 63.947 \\ 127,969 \\ 93.963 \\ 110,285 \end{array}$	$\begin{array}{r} 162,512 \\ 68,515 \\ 137,023 \\ 108,391 \\ 114,053 \end{array}$	$\begin{array}{r} 174,329 \\ 69,570 \\ 14,973 \\ 121,230 \\ 119,672 \end{array}$
	219，696	219，641	236,760	263，966	292，494	321，789
Lowa \qquad Kansas \qquad Minriesote \qquad Misounf \qquad Nebrasich \qquad Morit Daketa \qquad South Dakota \qquad		36,361 31,310 54,577 65,555 18,316 6,701 6,8291	40,026 33,231 61,185 67.929 20,687 7.506 6,734	$\begin{gathered} 47,069 \\ 30,687 \\ 70,256 \\ 74,226 \\ 24,882 \\ 10,111 \\ 10,735 \end{gathered}$	$\begin{array}{r} 52,374 \\ 34,334 \\ 75,590 \\ 81,309 \\ 28,305 \\ 12,790 \\ 7,792 \end{array}$	60,630 36,939 63， 0 88 䭪，176 30,820 13，526 8，410
	322，363	362.635	309，636	447． 51.1	489，892	534，725
Delemart Ditirict of Columbia \qquad Forida \qquad Georgin Merytand Aorth Garolina \qquad South Carolina \qquad Virginia Wögt Viginio	$\begin{array}{r} 4,904 \\ 25,585 \\ 65,468 \\ 49,596 \\ 63,399 \\ 64,119 \\ 6,792 \\ 30,470 \\ 9,957 \end{array}$	$\begin{array}{r} 5,760 \\ 29,469 \\ 73,486 \\ 51,755 \\ 70,843 \\ 78,268 \\ 11,113 \\ 34,971 \\ 7,614 \end{array}$	$\begin{array}{r} 6,333 \\ 31,393 \\ 76,742 \\ 59,661 \\ 79,045 \\ 76,076 \\ 13,901 \\ 39,548 \\ 6,937 \end{array}$		$\begin{array}{r} 7,787 \\ 37,246 \\ 98,401 \\ 77,691 \\ 93,683 \\ 92,330 \\ 19,939 \\ 51,012 \\ 11,901 \end{array}$	$\begin{array}{r} 10,443 \\ 41,147 \\ 105,002 \\ 84,106 \\ 102,599 \\ 99,380 \\ 21,613 \\ 56,551 \\ 11,664 \end{array}$
East South Coniral manm．．．．．．．．．．．．．．．	82， 214	97，699	105，014	123，385	130.690	141.414
Alabama Kentucky \qquad \qquad \qquad	$\begin{aligned} & 2 \overline{2}, 116 \\ & 14,236 \\ & 16,646 \\ & 29,216 \end{aligned}$	$\begin{aligned} & 27,005 \\ & 16,667 \\ & 19,623 \\ & 35,004 \end{aligned}$	$\begin{aligned} & 31,056 \\ & 1 \overline{7}, 334 \\ & \mathbf{3 1 , 9 9 9} \\ & 34,615 \end{aligned}$	$\begin{aligned} & 37,918 \\ & 21,414 \\ & 23,009 \\ & 40,144 \end{aligned}$	$\begin{aligned} & \mathbf{3 7 , 9 7 0} \\ & 22,936 \\ & 26,195 \\ & 43,817 \end{aligned}$	$\begin{aligned} & 42,340 \\ & 37,620 \\ & 25,445 \\ & 46,009 \end{aligned}$
West South Central ．，．．．．．．．．．．．．．．．．	179.837	203005	219，294	251.131		318，699
\qquad Othenoma \qquad T最至要 \qquad	$\begin{array}{r} 11,414 \\ 30,267 \\ 19,247 \\ 118,909 \end{array}$	$\begin{array}{r} 10,241 \\ 35,140 \\ 20,028 \\ 137,676 \end{array}$	$\begin{array}{r} 11,208 \\ 35,665 \\ 19,106 \\ 153,315 \end{array}$	$\begin{array}{r} 13,617 \\ 39,218 \\ 21,513 \\ 176,583 \end{array}$	$\begin{array}{r} 16,000 \\ 43,053 \\ 23,156 \\ 205,118 \end{array}$	$\begin{array}{r} 16,788 \\ 45,279 \\ 26,519 \\ 230,341 \end{array}$
	162，871	178.5	186，367	196；941	221，211	247，972
Arizont Colorado kdiaho Monteria \qquad Nevade Now Mexicos Utah Wyoming	$\begin{array}{r} 23,911 \\ 59,399 \\ 8,094 \\ 6,756 \\ 6,005 \\ 20,971 \\ 32,005 \\ 5,660 \end{array}$	30，321 B6．997 8，727 9.771 6．449 36,004 6.678	$\begin{array}{r} 31,164 \\ 62,585 \\ 10,600 \\ 9,614 \\ 7,537 \\ 18,075 \\ \hline 39,635 \\ 7,157 \end{array}$	$\begin{array}{r} 33,539 \\ 65,897 \\ 11,877 \\ 10,671 \\ 7,824 \\ 21,745 \\ 37,500 \\ 7,728 \end{array}$	$\begin{array}{r} 37,198 \\ 73,306 \\ 13,704 \\ 13,254 \\ \overline{9}, 404 \\ 24,437 \\ 40,769 \\ 9,117 \end{array}$	$\begin{array}{r} 41,827 \\ 77,519 \\ 15,215 \\ 14,168 \\ 9,049 \\ 29,386 \\ 46,742 \\ 11,072 \end{array}$
Pactic ：	457，944	525，896	541；397	627145	691，839	752，459
Alagke Caifernia \qquad Hawail \qquad Oregon \qquad Wenthingtōn \qquad	$\begin{array}{r} 15,524 \\ 323,634 \\ 23,520 \\ 32,204 \\ 62,662 \end{array}$	$\begin{array}{r} 16,560 \\ 380,220 \\ 24 ; 646 \\ 34,768 \\ 69,504 \end{array}$	$\begin{array}{r} 19,111 \\ 391, .995 \\ 391,149 \\ 38,557 \\ 72,581 \end{array}$	$\begin{array}{r} 21,139 \\ 459,436 \\ 24,596 \\ 39,699 \\ 83,275 \end{array}$	$\begin{array}{r} 2 \overline{2}, 746 \\ 500,756 \\ 28,049 \\ 4 \overline{7}, 081 \\ \overline{67}, 195 \end{array}$	$\begin{array}{r} 35,175 \\ 537,3,8 \\ 56,900 \\ 51,530 \\ 99,016 \end{array}$
	11，035		12，626	13.316	14，212	15，357

SOURCE：National Science Foundation

Table B-10. Federally financed R\&D expenditures at universities and colleges by State: FY 1972-77

(Dollars in thousands)

Division and State	1972	1973	1974	1975	1976	1977
	\$1,838,930	52,036,206	52,032,143	\$2,287,779	52,501،139	\$2,716,767
	259,003	270,521	200,407	255,953	281,627	312,537
Connecticut \qquad Mạ̀no Masachuthtis Now Hamphire \qquad Fhode Itiand \qquad Vemiont \qquad	$\begin{array}{r} 36,345 \\ 3,206 \\ 19,2657 \\ 6,648 \\ 12,652 \\ 4,755 \end{array}$	$\begin{array}{r} 38,913 \\ 4,423 \\ 210,694 \\ 7,347 \\ 1,345 \\ 4,309 \end{array}$	$\begin{array}{r} 40,203 \\ 4.571 \\ 162,620 \\ 5,858 \\ 11,966 \\ 5,179 \end{array}$	$\begin{array}{r} 45,530 \\ 4,04 \overline{6} \\ 177,790 \\ 7,699 \\ 1,690 \\ 7,200 \end{array}$	$\begin{array}{r} 59,760 \\ 41,080 \\ 191,720 \\ 9,036 \\ 14,173 \\ 9,036 \end{array}$	$\begin{array}{r} 56,917 \\ 4,171 \\ 210,723 \\ 0,547 \\ 19,361 \\ 9,918 \end{array}$
	336,347	366.996	375,558	417,040	452.574	482,614
Now Jêtiby \qquad Nōw York Pennsylvenia \qquad	$\begin{array}{r} 27,250 \\ 220,318 \\ 36,779 \end{array}$	$\begin{array}{r} 29.567 \\ 244,365 \\ 93,064 \end{array}$	$\begin{array}{r} 28,821 \\ 245,002 \\ \mathbf{2 4 1 , 7 3 5} \end{array}$	$\begin{array}{r} 3 \overline{2}, 375 \\ 275,659 \\ 109,006 \end{array}$	$\begin{aligned} & 32,553 \\ & 29,657 \\ & 12.657 \end{aligned}$	$\begin{array}{r} 34,847 \\ 313,501 \\ 134,266 \end{array}$
East North Contral .nate.......................................	278.674	315,281	315,137	345.137	368, 151	392.8 㓦
ilifinola \qquad Inciaria Michigan \qquad Ohio Wheontain \qquad \qquad	$\begin{aligned} & 83,693 \\ & \mathbf{3 5 , 0 4 2} \\ & 67,276 \\ & 49,890 \\ & 42,773 \end{aligned}$	$\begin{aligned} & 97,765 \\ & 39,624 \\ & 71,087 \\ & 54,828 \\ & 51 ; 777 \end{aligned}$	$\begin{gathered} 100,843 \\ 40,829 \\ 67,850 \\ 559 \\ 55,969 \\ 53,146 \end{gathered}$	$\begin{array}{r} 106,551 \\ 43,916 \\ 76,622 \\ 60.697 \\ 55,451 \end{array}$	$\begin{array}{r} 116,558 \\ 45,800 \\ 76,115 \\ 68,179 \\ 55,499 \end{array}$	$\begin{array}{r} 127,336 \\ 47,353 \\ 64,453 \\ 73,119 \\ 60,102 \end{array}$
	123,398	126,730	134,091	148,034	160,279	176,329
lowi Kañess \qquad Minterote \qquad Misgouri \qquad Nobragka \qquad North Dākote \qquad South Dakotia \qquad	17,727 17,433 28.504 46,961 7,144 2,121 3,508		21,766 20,542 35,463 42.597 2.610 3,610 3,108 3,003	$\begin{array}{r} 25,199 \\ 16,762 \\ 42,065 \\ 47,076 \\ \hline 9,904 \\ 4,373 \\ 2,915 \end{array}$	$\begin{aligned} & 26,769 \\ & 17,730 \\ & 45,236 \\ & 5 z, 697 \\ & 10,853 \\ & 4,791 \\ & 3,201 \end{aligned}$	$\begin{array}{r} 31,394 \\ 18,998 \\ 48,628 \\ 56,434 \\ 11,905 \\ 5,722 \\ 3,308 \end{array}$
South Allantie s...a..	208,886	235,012	244;242	205,023	317,255	340,301
Deleware District of Columbia \qquad Florida \qquad Georgia Maryland \qquad Nöth Carofiñ \qquad South Carolina \qquad Virginia Wëst Virginig \qquad	3,158 21,600 37,131 82,989 47.800 46,847 4,763 10,260 6,344	$\begin{array}{r} 3,500 \\ 23,755 \\ 41,600 \\ 24,97 \\ 54,950 \\ 55,079 \\ 4,682 \\ 21,333 \\ 4,805 \end{array}$	$\begin{array}{r} 3,566 \\ 24,630 \\ 42,370 \\ 54,977 \\ 31,226 \\ 53,246 \\ 6,594 \\ 3,594 \\ 4,337 \end{array}$	3,689 26,294 44,162 33,072 69,463 62,896 7,773 28,106 5,558	$\begin{array}{r} 4,625 \\ 28,865 \\ 56,006 \\ 38,403 \\ 73,660 \\ 65,395 \\ 8,959 \\ 33,742 \\ 7,633 \end{array}$	5.976 30,442 55,831 43,297 78,490 69,284 11,084 39,437 6,452
	53,670	65.859	67, 6 665	78,236	60,612	84,353
	$\begin{array}{r} 15,136 \\ 8,192 \\ 7,766 \\ 23,576 \end{array}$	$\begin{array}{r} 19,655 \\ 9.0045 \\ 9,029 \\ \mathbf{9 8 , 0 2 4} \end{array}$	$\begin{array}{r} 21,967 \\ 8,924 \\ 9,370 \\ 27,604 \end{array}$	$\begin{aligned} & 26,695 \\ & 11,488 \\ & 5,553 \\ & \mathbf{5 0 , 5 2 0} \end{aligned}$	$\begin{aligned} & 26,515 \\ & 11,059 \\ & 10,31 \\ & \mathbf{3 2 , 6 5 7} \end{aligned}$	$\begin{aligned} & 27,865 \\ & 11,892 \\ & 10,711 \\ & \mathbf{3 3 , 7 6 4 5} \end{aligned}$
	103.997	112,469	120,792	141,949	161,049	183.327
\qquad Louleana \qquad Oklahoma \qquad Texes \qquad	$\begin{array}{r} 6.111 \\ \mathbf{1 3 , 8 6 3} \\ 10,375 \\ 73,568 \end{array}$	$\begin{aligned} & 4,825 \\ & 14,448 \\ & 11,186 \\ & 062,030 \end{aligned}$	$\begin{array}{r} 4,346 \\ \mathbf{4}, 820 \\ 9,765 \\ 90,866 \end{array}$	$\begin{array}{r} 5,261 \\ 17,156 \\ 11061 \\ 106,431 \end{array}$	$\begin{array}{r} 8,639 \\ 18,603 \\ 12,652 \\ 122,854 \end{array}$	$\begin{array}{r} 7,807 \\ 19,460 \\ 14,4,43 \\ 141,626 \end{array}$
Mountain ...m.................i,	115,474	122,406	120303	135,956	150,355	165,150
Aituona Colorado Idaho Montana Nevade Now Mexico Utah Wyoming	11,949 48,081 3,697 3.059 $\mathbf{3}, 310$ 18,275 23.594 3.510	15, 818 50,161 3,668 4,127 3.560 12,290 12,919 27,422 4,531	16,038 47,253 4,805 4,269 3,047 14,779 28,496 4,626	17.353 52,149 5.059 2,870 18,095 $3,0,56$ $\mathbf{5}, 069$	20,461 56,051 7,046 2, 851 20,218 31.937 5,957	23,017 57,891 6,560 7,593 4,207 22,942 35,690 $\mathbf{7 , 2 5 0}$
Pacitie s................ne,	355.127	410,426	415,761	474.860	522,446	572,022
Alaska Califorid \qquad Howail \qquad Oregón \qquad Washington \qquad	$\begin{array}{r} 11,204 \\ 26,214 \\ 13,725 \\ 13,725 \\ 31,632 \\ 45,052 \end{array}$	$\begin{array}{r} 11,0222 \\ 306,824 \\ 15,382 \\ 24,007 \\ 52,321 \end{array}$	$\begin{array}{r} 10, \overline{718} \\ 311,769 \\ 14,065 \\ 25,458 \\ 55,731 \end{array}$	$\begin{array}{r} 12,047 \\ 360,396 \\ 15,540 \\ 27,090 \\ 59,705 \end{array}$	$\begin{array}{r} 18,429 \\ 395,590 \\ 17,578 \\ 30.900 \\ 50,929 \end{array}$	$\begin{array}{r} 24,664 \\ 42,856 \\ 17,845 \\ 32,890 \\ 72,667 \end{array}$
	4,297	4;492	4,957	5.591	6,592	$7, \mathbf{2 7 1}$

SOURCE: National Science Foundation

Table B-11. Relative concentration of R\&D expenditures at leading doctorate-granting institutions by source:

FY 1973-77

Fiscal year	Percent of total			
	$\begin{gathered} \text { Top } \\ 10 \end{gathered}$	$\begin{gathered} \text { Top } \\ 25 \end{gathered}$	$\begin{gathered} \text { Top } \\ 50 \end{gathered}$	$\begin{aligned} & \text { Top } \\ & 100 \end{aligned}$
Federaly financed:				
1973 :.,.................................	25.6	47.4	67.6	50.6
1974 мпмх,	24.8	47.4	67.4	86.6
	24.5	470	66.9	86.8
	23.7	46.2	66.7	86.7
	23.7	45,6	66.2	86.1
Nontederally financed:				
	23.4	45.4	68.5	88.1
	23.4	45.9	68.9	88.9
1975 :п, 1976 ,, ,	23.6	45.8	69.1	889
	23.1	45.0	68.7	88. 6
	22,5	44.3	68.1	88.3

sOURCE: NSF-sponsored study, "Federally Funded Research and Development at Universities and Collegess," George J, Nozicka, Moshman Associates, Inc., Washington, D.C. 20034, 1979, tables 14 through 23.

Table B-12. Total and federally financed capital expenditures for scientific activities at unlversities and colleges by fleld of science:

FY 1972-77'
(Dollars in thousands)

Field	1972	1973	1974	1975	1976	1977
All gources:						
Total.:.,..............................	怱14,844	\$840,46!	\$836,412	\$1;016,519	\$1,041,030	\$960,430
Engineering stw.s...................	67,307	57,955	91,764	118,390	81,716	86,233
Physleal sclencests,	68,239	108,868	69,271	80,280	73,521	65,239
Environmental selence \qquad Mathematical and	96,295	26;624	24,178	35,241	47,791	28.393
Computer selences	24,712	20,016	23,669	15,042	24,677	23,592
Lifo eciences man, m.	517,941	488,600	494,473	668,681	706,844	644,779
	19.007	39,566	15,511	11,530	9,119	12.737
Sociai sciencesn.s........	59,993	61,217	59.346	49,708	44,027	30,997
Other sciences, п.ө. ©s:,	41,366	37,535	38,180	37,647	53,335	66,460
Federal Government:						
Total	239,193	226,743	225,511	269,965	206,622	195,496
	23,439	15,751	42,681	64,026	20,140	17,277
Physical sciences .w............es:	18,551	24,473	20,619	18,832	19,138	21,894
Environmental Eelences \qquad Máthematical and	17.827	5,873	7,059	5,884	6,313	+9,317
computer eciences	4,341	3,022	4,257	2,584	2,048	1,882
Lifioneiences .,.......................	52,328	161,934	139,745	169,412	153,528	137,368
Psychology ...t............s. \times.-......:	3,583	5,101	2,528	2,236	1,955	+ 2,388
	10,939	5,371	4,477	2,766	1,813	2,087
Other sciences, ne.c. :xmerme....	8,105	5,218	4,145	4,225	1,687	3,283
Other sources:						
	675,651	613,718	610,901	746,554	834,408	764,934
Engineering ...,.......................	63,868	42,204	49,103	54,364	61.576	70,956
Physical sciences .t.,	49,672	84,395	68,652	61,448	54,383	43,345
Environmental gelences \qquad Mathematical and	78,468	20,751	17,119	29,357	41,478	19,076
computar sciences :, \%.a,	20,371	16,994	19,412	12,458	22.629	21,710
	365,613	326,746	354,728	499,269	553,316	507.411
	15,344	34,465	12,983	0,294	7,164	10,349
	49,054	55,846	54,869	46.942	42,214	28.910
Other gelonces, ne.e. n.x..........	33,261	32,317	34,035	33,422	51,648	63.177

[^33] SOURCE: National Sclence Foundation

Table B-13. Capital expenditures for scientific activities at universities and colleges by source and institutional control: FY 1972-77
(Dollars in thousands)

Souice and institutional control	1972	1973	1974	1975	1976	1977
Total	\$914,844	\$840,461	\$836,412	\$1,016,519	\$1,041,030	\$960,430
Public \qquad Privaté \qquad	$\begin{aligned} & 664,684 \\ & 250,160 \end{aligned}$	$\begin{aligned} & 612,710 \\ & 227,751 \end{aligned}$	$\begin{aligned} & 636,823 \\ & 199,589 \end{aligned}$	$\begin{aligned} & 775,826 \\ & 240,693 \end{aligned}$	$\begin{aligned} & 750,625 \\ & \mathbf{3 9 0 , 4 0 5} \end{aligned}$	$\begin{aligned} & 686,141 \\ & 274,289 \end{aligned}$
Federal sources, total \qquad	239,193	226,743	225,511	369.965	206,622	195.496
Public \qquad Private \qquad	$\begin{array}{r} 160,808 \\ 78,385 \end{array}$	$\begin{array}{r} 157,482 \\ 69,261 \end{array}$	$\begin{array}{r} 173,543 \\ 51,968 \end{array}$	$\begin{array}{r} 198,287 \\ 71 ; 678 \end{array}$	$\begin{array}{r} 126,449 \\ 80,173 \end{array}$	$\begin{array}{r} 119,322 \\ 76,174 \end{array}$
Non-Federal sourcest total	675,751	613,718	610,901	746,554	634,408	764,934
Publiç \qquad Private \qquad	$\begin{aligned} & 503,676 \\ & 171,775 \end{aligned}$	$\begin{aligned} & 4 \overline{55,}, 228 \\ & 158.4960 \end{aligned}$	$\begin{aligned} & 463,280 \\ & 147,621 \end{aligned}$	$\begin{aligned} & 577,539 \\ & 169,015 \end{aligned}$	$\begin{array}{r} 624,176 \\ \underline{210,232} \end{array}$	$\begin{aligned} & 566,819 \\ & 198,115 \end{aligned}$

SOURCE: National Sciéñé Foùndạtion

43

Table B-14. Doctorate recipients, 1972-77, and academic employment, 1973-78, by field

Doctorate reclplents in sclence and engineering by fleld: June 1972-77

Field	1972	1973.	1974	1975	1976	1977
Total m.....................s.e.	19,556	19,555	19,086	19,048	18,790	18,281
Engineering ...wis.ti..............	3,475	3,338	3,144	2,959	2,791	2,641
	3,646	3,439	3,126	, 3,055	2,858	2,719
Environmental sciences Mathematical and	650	B62	674	694	714	691
Mastiematical and computer sciences \qquad	1,201	1,222	1,196	1,149	1,003	959
	4,914	4,983	4,790	4,884	4,841	4,767
Psychology ,rist....................	2,262	2,444	2,587	2,749	2,878	2,960
Social sciences . .n.	3,328	3.467	3,569	3,558	3,705	3,544

SOURCE: National Research Council, Summary Fepor, Doctorate Rocipients from United Stales Universitiess, June 1972 through June 1977, Survey of Eamed Doctorates.

Sclentiste and engineers employed in unlverilitee and colleges by field and status: January 1973-78

Field and status	1973	1974	1975	1976	1977	1976
All fields:						
	264,900	268,495	278.919	288,155	297,289	306,547
	216,433	218,407	223,336	229,757	235,859	241,099
	48,467	50,088	55,583	50,398	61,430	65,448
Engineers:						
	27,530	27,198	27,919	28,505	29,878	30,900
	23,485	22,764	22,580	22,937	23,937	24,601
	4,045	4,434	5,339	5,568	5,941	6,299
Physical scientists:						
	30,215	30,605	30,836	31,424	32,078	32,794
	26,669	26,849	26,662	27,077	27,518	27,861
Part time mestixi,	3.546	3.756	4,174	4,347	4,560	4,933
Ervironmental scientists:						
	6,935	7,636	7,855	8,427	9,207	9,428
	6,092	6,563	6,787	7,231	7,960	8.109
	843	1,073	1,068	1,196	1.247	1,319
Mathomaileal and computer scientiste:						
	24,770	27.126	28,475	29,915	31,962	32,947
	20,794	22,157	22,404	23,124	23,853	24,317
	3,976	4,969	6,071	6,791	8,109	8,630
Liee scientista:						
Total .n...............................nes.	112,359	110,445	113,466	114,537	117,360	122,522
	-8,423	88,497	90,864	91,829	94,248	97,238
	23,936	21,948	22,782	22,708	23,112	25,284
Psychologigts:						
	18,876	19,964	21,649	22,937	23,707	23,720
	14,777	14,957	15,973	16,804	17,320	17,362
	4,099	5,007	5,676	6,133	6,387	6,358
Social seientists:						
	44,215	45,521	48,719	52,410	53,097	54,236
Full time ...,	36,193	36,620	38,246	40,755	41,023	41,611
	8,022	8,901	10,473	11,655	12,074	12,625

[^34]Table B-15. Projected full-time labor force of doctoral sclentists and engineers by field: FY 1977-87
(In thousends)

Fiold	1977	1987	Pereent change
Total :s,.......,	277	412	48.7
Engineering :...s.a.,.............	44	72	63.6
Physical and environmental sciences	69	95	377
Mathematical and computer sciences.	20	28	40.0
	70	103	47.1
Social sclenceas, including psychoọgy \qquad	73	113	54.8

SOUACE: National Science Foundation

Table B-16. Sclentists and engineers employed at universities and colleges by type of Institution and status: January 1973-78

Type of institution and status	1973	1974	1975	1976	1977	1978
All institutions:						
Total..., wisa,	264,900	266,495	278,919	288, 155	297,289	306.547
Full time	216,433	218,407	223,336	${ }_{229,757}$	235,859	241,099
	48,467	50,086	55,583	58,398	61,430	65,448
Doctorates in \$/E:						
Total,, ,	174,474	175,113	180,001	185,896	192,325	198,872
Full time,	143,393	144,525	147,942	153,653	159,242	163,749
Part time	31,091	30,588	32,059	32.183	33,083	35, 123
Master's in S/E:						
Total ..	28,703	29,765	34,075	33,143	34,790	39,181
Full time	24,051	24,957	27,511	26.307	27,118	29,559
Part time m, ms, mi.......................	3,852	4,808	6,564	6,836	7,672	9.622
Bacheor's in $\mathbf{S / E}$;						
Total...	28,363	29,143	27,402	27,862	27,701	26,259
Full timee.e.........	23,620	23,940	22,548	22,867	22,615	26,259 $\mathbf{2 1 , 2 1 3}$
Part time	4,743	5,203	4,854	4,995	5,086	5,046
No science deyjee'						
Total ...es	33,360	34,474	37,441	41,314	42,473	
Fuil time ..	24,569	24,985	25,335	26,930	26,884	26,578
Part time	8,791	9,489	12,106	14,384	15,589	15,657

i Includes 2-year institutions as well as institutions awarding degrees in nonscience fields.

Table B-17. Scientists and engineers employed at universities and colleges by type of activity: January 1973-78

Type of activity	1973	1974	1975	1976	1977	1978	$\frac{\text { Percent change }}{1973-78}$							
Full-time-equivalent (FTE) basis: Totai 235,050 238,055 244,381 252555 250,000														
Teachingtset......................	168,461	175,308	177,443	183,546	187,718	191,286	13.5							
Regeearch and devolopment:	46,896	47,972	51,171	52,916	34,408	57,123	21.8							
	19,693	14,775	15.767	16,093	16,840	17:842	- 9.4							
Total	264,900	268,495	2776,919	288,155	297,289	306.547	15.7							
	199,083	206,745	215,031	222,816	220,729	235,360	18.2							
Researeh and developmentes	46,634	47,386	49,440	50,249	52,316	-54,332	16.5							
	19,183	14,364	14,449	15,090	16,244	16,855	- 12.1							

SOURCE: National Sciéncé Fouñádión

Table B-18. Doctoral sclentists and engineers employed at universitles and colleges by primary work activity: 1973-77

Primary work activity	1973	1975	1977	Percent change		
				1973-75	1975-77	1973-77
Total,	127,863	147,268	161,086	15.2	9.4	26.0
Teaching Research and development Other activities	$\begin{aligned} & 78,456 \\ & 35,157 \\ & 14,250 \end{aligned}$	$\begin{aligned} & 89,672 \\ & 40,675 \\ & 16,921 \end{aligned}$	$\begin{aligned} & 88,675 \\ & 48,672 \\ & 23,739 \end{aligned}$	14.3 15.7 18.7	$-1,1$ 19,7 40.3	$\begin{aligned} & 13.0 \\ & 38.4 \\ & 66.6 \end{aligned}$
Universities and 4 -year colleges \qquad	124,901	143,701	156,452	15.1	8.9	25,3
Teaching Research and development \qquad Other activities \qquad	76,151 35,078 13,672	$\begin{aligned} & 86,649 \\ & 40,573 \end{aligned}$ $16,479$	$\begin{aligned} & 84,832 \\ & 48,497 \\ & 23,123 \end{aligned}$	13.8 15.7 20.5	-2.1 19.5 40.3	$\begin{aligned} & 11.4 \\ & 38.3 \\ & 69.1 \end{aligned}$
2-year colleges	2,962	3.567	4,634	20.4	29.9	56.4
Toaching Fesearch and development Other activities	$\begin{array}{r} 2,305 \\ 79 \\ 578 \end{array}$	$\begin{array}{r}3,023 \\ 102 \\ 442 \\ \hline\end{array}$	3,849 175 616	31.2 29.1 -23.5	27.1 71.6 39.4	$\begin{array}{r} 66.7 \\ 121.5 \\ 6.6 \end{array}$

${ }^{1}$ Includes management of Reso activities.
SOURCE: National Science Foundation, Survey of Doctorate Recipients

Table B-19. Full-time sclentists and engineers employed at universities and colleges by fleld and sex: January 1974-781

Field	1974			1975			1976			1977			1976		
	Tolal	Men	Women	Total	Меп	Women	Toial	Men	Womon	Total	Men	Women	Total	Men	Women
Teial ..e.e.s.as	316,407	186,283	32,124	223,336	189,723	33.613	299.757	194, 273	35,484	235,859	109; 104	36,755	241;090	202,413	38,686
Enginers Aeroniutical a a atrōnautical engineera \qquad Chemical onghoers Clvil engineera \qquad Eloctical engineers \qquad Mechanical angineers \qquad Other ongheers \qquad	22,784	22,425	339	23,560	22.211	309	22,037	23,4987	450	23,937					
	1,023	1,001	22	944	-9219	25	22,037	$\begin{array}{r}25488 \\ \hline 936\end{array}$	45 30		-3,49	498	24,801 905	24,008 647	593 18
	1,522	1.500	22	1,603	1,576	25	1.637	1,600	37	1,881	1,642	30	1,726	1,694	32
	3.759	3,690	61	3,832	3.771	61	4.017	3,094	63	4,114	4,025	89	4,102	4,067	125
	5,404	5,347	57	5,303	5,336	57	5.409	5,335	74	5.467	5,395	72	5.594	5,502	125 92
	4,255	4.222	39	4,355	4,325	30	4,35	4,308	45	4,473	4,416	57	4,543	4,482	${ }_{81} 81$
	6,001	6,657	144	6,453	6,262	171	6.555	6,374	181	7.231	7,012	219	7.581	7,316	265
Ptiysical acientitats \qquad Chemitate \qquad Phyblecitis \qquad Other plyales accentitite \qquad	26,849	24,910	1,839	26,662	24,665	1,997	27,077	24,970	2,107	37,518	25,320	2.196	27,861	25,418	2,443
	14,075	12,690	1,385	13,629	12,395	1.428	14,146	12,632	1,514	14,456	12,089	1,557	14,711	12,987	1,724
	10,870	10,475	395	10,940	10,554	386	10,836	10.444	394	11,070	10,633	437	11, $\mathbf{2}^{72}$	10,794	478
	1,904	1,745	159	1,899	1,716	183	2.098	1,494	199	1,892	1,768	204	1;876	1,637	241
Environmental scientist \qquad Earth ecientist \qquad Atnospheric scientigita \qquad Oceenoginghers \qquad	${ }^{6,563}$	6.230	327	6.787	6,468	319	7.231	6,843	388	7,060	7,451	509	8,109	7,549	560
	4,957	4,728	229	5.172	4,949	223	5.523	5,237	286	5,898	5,551	347	5,920	5,516	404
	. 570	535	$\stackrel{39}{59}$	559	595	34	601	568	33	694	656	38	601	766	35
	1,095	976	59	1,056	994	62	1,107	1,038	69	1,368	1,244	124	1,388	1,267	121
Mathematical and computer seientigts \qquad Mathematileant Computer selentista \qquad	22,157	10,335	2,832	22,404	19.479	2.825	23,124	20,025	3,009	23.853	20,607	3.246	- 24,317	20,054	3,483
	18,490	16,053	2,437	18,699	18,220	2,479	18,994	16,374	2,620	19,271	16,561	2.710	19,545	16,640	3,905
	3,687	3,282	385	3,705	3,259	446	4,130	3,651	479	4,562	4,046	536	4,772	4,214	558
Lifo scientitity \qquad Agricalturai scientisis \qquad Blological acientleta \qquad Medicel iccentiats \qquad	B6,497	70.756	17,741	90,684	72,639	18,045	-1,809	73.560	18,299	94.248	75,587	10661	67,389	77,467	19,771
	12,459	11,235	1,224	13.235	11,885	1,550	12,942	11,777	1,165	12,094	11,815	1.068	13,504	12;375	1,219
	31,494	25,823	5,671	33,462	27,143	6.319	34,850	27,821	7,029	36,930	29,368	7.562	37,442	29,675	7,767
	44.544	33,698	10,846	43.867	33.811	10,176	44,037	33,862	10,075	44,434	34,404	10,036	46,202	35,417	10,765
	14,057	117.769	3,188	15.973	12,391	3.582	16,804	12,815	3,909	17,320	13,054	4,268	17,382	13,061	4,301
Social ictentitis \qquad Economith \qquad	36.600	30.852	5,788	36.246	31,670	6,376	40,755	33,573	7,182	41,023	33,646	7,377	41,611	34,056	
	9,830	9,042	788	10.169	8,304	885	10,371	-9,436	7935	10,685	9, 3,631	\% 954	4, 0,761	34,056 9,979	7,555 964
Soctologists :...	10,048	7,672	2,376	10,744	5,104	2,640	11,428	6,501	2,927	11,625	6.594	3.031	11,449	8,430	3.019
Pollicell scierntieta \qquad Other social scientiats \qquad	8,3\%6	7,533	663	8,697	7,788	899	9,073	8,043	1,030	9,021	7,875	1,046	0,026	7,950	1,076
	8,346	6.605	1.741	8,846	6,674	1,972	9,893	7.593	2,290	8,692	7,346	2,346	10,375	7.879	2,496

${ }^{1}$ Data were not collected by sex in January 1973.
SOURCE: National Science Foundation

Table B-20. U.S. scientists and engineers by sex: 1974-78

Sex	1974	1976	1978	Percent change	
				1974-76	1976-78
Total, all U.S. scientiats and engineers \qquad	2,481,800	2,705,800	2,741,400	9.0	1.3
Men \qquad Women \qquad	$\begin{array}{r} 2,265,000 \\ 216,800 \end{array}$	$\begin{array}{r} 2,455,800 \\ 250,000 \end{array}$	$\begin{array}{r} 2,475,300 \\ 266,100 \end{array}$	$\begin{array}{r} 8.4 \\ 15.3 \end{array}$	$\begin{array}{r} 8 \\ 6.4 \end{array}$
Full-time scientists and engineers employed at unlversitieas and colleges :	218,407	229.757	241,099	5.2	4.9
Men \qquad Women \qquad	$\begin{array}{r} 186,283 \\ 32,124 \end{array}$	$\begin{gathered} 194,273 \\ 35,484 \end{gathered}$	$\begin{array}{r} 202,413 \\ 38,686 \end{array}$	$\begin{array}{r} 4.3 \\ 10.5 \end{array}$	$\begin{aligned} & 4.2 \\ & 9.0 \end{aligned}$

[^35]Table B-21. Unemployment rate of U.S. scientists and engIneers by sex: 1974, 1976, and 1978

Year and sex	Labor force	Employed scientists and engineers	Unemployed, soeking employment	Unemployment rate
1974; total,	2,288,000	2,248,200	39,800	1.7
Men \qquad Women \qquad	$\begin{array}{r} 2,104,700 \\ 183,300 \end{array}$	$\begin{array}{r} 2,072,100 \\ 176,100 \end{array}$	$\begin{array}{r} 32,600 \\ 7,200 \end{array}$	$\begin{aligned} & 1.5 \\ & 3.9 \end{aligned}$
1976, total... ,	2,451,700	2,377,200	74,600	3.0
Men \qquad Wornen \qquad	$\begin{array}{r} 2,240,000 \\ 211,700 \end{array}$	$\begin{array}{r} 2,179,900 \\ 1997200 \end{array}$	$\begin{aligned} & 60,100 \\ & 14,500 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 6.8 \end{aligned}$
1978, total, , , - ,,	2,507,600	2,473,200	34,400	1.4
Mèn \qquad Women \qquad	$\begin{array}{r} 2,270,400 \\ 237,200 \end{array}$	$\begin{array}{r} 2,241,700 \\ 231,500 \end{array}$	$\begin{array}{r} 26,700 \\ 5,700 \end{array}$	$\begin{aligned} & 1.3 \\ & 2.4 \end{aligned}$

SOURCE; National Science Foundatión

Table B-22. Doctoral sclentists and engineers in the U.S. by race: 1973 and 1977

Race	19731		1977		Percent change$1973-77$
	Number	Férçant distribution	Number	Percéent distribution	
Total me..........,	238,913	100.0	303,267	100.0	26.9
White \qquad Minorities, total \qquad	$\begin{array}{r} 217,112 \\ 2,296 \end{array}$	$\begin{array}{r} 90.9 \\ 5.1 \end{array}$	$\begin{array}{r} \mathbf{2 7} 70,305 \\ 19,179 \end{array}$	$\begin{array}{r} 89.1 \\ 6.3 \end{array}$	$\begin{aligned} & 24.5 \\ & 56.0 \end{aligned}$
Black \qquad American Indian \qquad Asian \qquad	$\begin{array}{r} 2,242 \\ 435 \\ \mathbf{4 3 1}, 619 \end{array}$.9 .2 4.0	$\begin{array}{r} 2,846 \\ 630 \\ 15,703 \end{array}$	$\begin{array}{r} .9 \\ .2 \\ 5.2 \end{array}$	$\begin{aligned} & 26.9 \\ & 44.8 \\ & 63.3 \end{aligned}$
Nō report ,ate...............	9,505	4.0	13,783	4.5	45.0

${ }^{1}$ Revisied.
SOURCE: National Science Foundation, Survey of Doctorate Recipients

Table B-23. Doctoral scientists and engineers employed at universitles and colleges by field and race: 1973 and 1977

Field of science	1973				1977				Percent change, 1973-77			
	White	Black	American Indient	Asian/ Pacific Islander	White	Black	American Indian	Asian/ Pacific Iglander	Whito	Black	American indiàan	Asian/ Pacific loblander
Total ,w.........................	115,922	1,381	274	5,155	144, 161	1,793	341	7,269	24.4	29.8	24.5	41.4
Engineorse.t.................	11,467	66	26	1:001	13,779	58	26	1,312	20.2	-12.1		
Physical sclentists	19,283	271	34	1,093	23,830	271	25	1,408	23.6	- 0 -	- 25.8	31.1 28.8
Environmental colentista \qquad Mathematical and	4;830	6	13	120	5,823	12	2	1,406	20.6 20.6	-0.00	$=25.8$ -84.6	28.8 80.8
computer sicientistis	10.575	115	10	494	12,577	100	17	761	18.9	- 13.0	70.0	54.0
	35,658	455	74	1,541	42,533	545	90	2,322	19.3	-19.8	21.6	54,9 50.7
	13,263	171	43	115	15,828	345	68	154	19.3	101.8	58.1	53.9 33.9
	20,846	297	74	791	29,791	462	113	1,15	42.9	55.6	53.5	41.0

SOURCE: National Science Foundation, Survey of Doctorate Recipients

Table B-24. Unemployment rate of U.S. sclentists and engineers by race: 1974, 1976, and 1978

Year and race	Labor lorce	Employed scientists and engineers	Unemployed, soeking employment	Unemployment rate
1974, total	2,288;000	2,248,200	39,800	1.7
White ,.....,	2,188,500	2,152.900	35,600	1.6
	35,500	32,500	3,000	8.5
Aglan .r.ew........................	41,200	40,500	700	1.7
Others......	22,800	22,500	300	1.3
1976, total ,.........................:-	2,451,700	2,377,200	74,600	3.0
White-5.5-5..........	2,348,200	2,278,800	69,400	3.0
Black , m, mesm,	36,000	33,000	3,000	8.3
Asian	42,600	41,400	1,200	2.8
Other	24,800	23,800	1,000	4.0
	2,507,600	2,473,200	34,400	1,4
	2,393,600	2,360,900	32,700	1.4
Black	39,600	39,000	600	1.5
	51,300	50,500	800	1.6
	23,200	22,000	400	1.7

SOURCE: National Science Foundation

Table B-25. Scientists and engineers employed at universities and colleges by type: January 1975-78

Type of academic employment	1975	1976	1977	1976	Percent change		
					1975-76	1976-77	$1977=78$
Total	276,919	288,155	297,289	306.547	3.3	3.2	3.1
Postdoctorates ${ }^{1}$......,.,.,.,.m......	16,695	17,068	18,751	19,748	2.2	9.9	5.3
All other academic scientists and engineers \qquad	262.224	271,087	278,538	286.799	3.4	2.7	3.0

iData as of fall semester of each preceding year from NSF Survey of Graduate Science Student Suppert and Postdoctorals for dociotate-granting institutións.
SOURCE; National Science Foundation

Table B-26. Postdoctorates, graduate research assistants, and R\&D expenditures by field: Fall 1977^{1}
(Dollars in millions)

Field	Postdoctorates		Graduate research assistants		$\begin{aligned} & \text { FY } 1977 \\ & \text { R\&D } \\ & \text { expenditures } \end{aligned}$	
	Number	Pércent distributioñ	Number	Percent distribution	Amount	Percent disisti= bution
	19,748	100.0	43,991	100.0	\$3.987	100.0
Engineerring	1,234	6.2	11.939	27.1	491	12.3
Physical sciences	4,180	21.2	6.763	15.4	414	10.4
Environmental scieences, \%, mis.........	376	1.9	3,151	7.2	307	7.7
Mathematieal and computer sciences \qquad	148	. 7	1,440	3.4	103	2.6
Liffe scieñés	13,065	66.2	13,252	30.1	2,235	56.0
Psychetogy	385	2.0	2.293	5.2	80	2.0
Social sciencese...........	360	1.8	5,153	11.7	256	6.4
Other sciences n.e.c.	$=-$	$=*$	--	=-	102	2.6

'At doctorate-granting institutions.
SOURCE: National Seience Foundation
Table B-27. Postdoctorates, graduate research assistants, and R\&D expenditures in the sciences and engineering by source of support: Fall 1974-771
(Dollars in millions)

Source	Fall				Percent change		
	1974	1975	1976	1977	1974=75	1975-76	1976-77
Fostdoctorates, total ...	16,695	17,068	18,751	19,748	2.2	9.9	5.3
Federally supported \qquad Nonfederally supported \qquad	$\begin{array}{r} 11,823 \\ 4,872 \end{array}$	$\begin{array}{r} 12,046 \\ 5,020 \end{array}$	$\begin{array}{r} 13,225 \\ 5,52 \overline{6} \end{array}$	$\begin{array}{r} 13,553 \\ 6,195 \end{array}$	$\begin{aligned} & 1.9 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 9.8 \\ 10.1 \end{array}$	$\begin{array}{r} 2.5 \\ 12.1 \end{array}$
Graduate research assistants, total:3.is	39,686	40,201	42,809	43,991	13	6.5	2.8
Federally supported \qquad Nonfederally supported \qquad	$\begin{array}{r} 22,357 \\ \mathbf{1 7 , 3 2 9} \end{array}$	$\begin{aligned} & 23,104 \\ & 17,097 \end{aligned}$	$\begin{aligned} & 24,460 \\ & 18,349 \end{aligned}$	$\begin{aligned} & 25,155 \\ & 18,836 \end{aligned}$	$\begin{array}{r} 3.3 \\ -1.3 \end{array}$	$\begin{aligned} & 5.9 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.7 \end{aligned}$
	Fiscal Year				Percent change		
	1974	1975	1976	1977	1974-75	1975-76	1976-77
Académic RėD expenditures, total	2\$2.622	\$2,677	${ }^{\text {S }}{ }_{2} \mathbf{7} \mathbf{7 4 5}$	\$2,800	2.1	2.5	2.0
Federal sources \qquad Noñ-Federal sources \qquad	$\begin{array}{r} 1,764 \\ 858 \end{array}$	$\begin{array}{r} 1,795 \\ 881 \end{array}$	$\begin{array}{r} 1.842 \\ 903 \\ \hline 90 \end{array}$	$\begin{array}{r} 1,874 \\ 9266 \end{array}$	$\begin{aligned} & 1.8 \\ & 2.7 \end{aligned}$	$\begin{array}{r} 2.6 \\ 2.5 \end{array}$	$\begin{aligned} & 1,7 \\ & 2,5 \end{aligned}$

${ }^{1}$ At doctorate-granting institutions.
2Based on GNP implicit price dellator in 1972 dollars.
SOURCE: National Science Foundation

Table B-28. Postdoctorates by fleld, Institutlonal control, and citizenship: Fall 1977'

	Total		Control				Citizenohip			
			Publie		Private		Foreign		U.S.	
Figld	Number	Percent digitribution	Number	Percent distributioñ	Number	Peicent distribution	Number	Percent distribution	Number	Percent distribution
	19.748	100.0	10,577	100.0	9,171	1000	6,213	100.0	13,535	100.0
Engineering :xise,	1,234	6.2	638	6.0	596	6.5	650	10.5	584	4.3
Physical sciencesa.c..................	4,180 376	21.2	2,418 $\mathbf{2 4 9}$	22.9	1,762	19.2	1,725	27.8	2,455	18.1
Environmental sclences .,.,....en,	376 148	1.9 .7	249 59	2.4	127 89	1.4 10	$\begin{array}{r}111 \\ \hline 53\end{array}$	$\begin{array}{r}1.8 \\ \hline 8\end{array}$	$\begin{array}{r}2,485 \\ \hline 265\end{array}$	$\begin{array}{r}1.10 \\ \hline 7\end{array}$
Mathematieal and computer sciences Life sclences	148 13,065	.7 66.2	59 6.871	.6 65.0	89 6.194	1.0 675	53 3538	.9 569	95 9.527	$\begin{array}{r}.7 \\ \hline 80.4\end{array}$
Psychology	r 385	66.2 2.0	$\begin{array}{r}6,871 \\ \hline 140\end{array}$	65.0 1.3	6,194 $\mathbf{2 4 5}$	67.5 2.7	$\begin{array}{r}3.538 \\ \hline 38\end{array}$	56.9 .6	9,527 347	70.4 26
Social priences	360	1.8	202	1.9	158	1.7	98	1.6	262	2.6 1.9

${ }^{1}$ Al doctorate-granting institutions.
SOURCE: National Science Foundation

Table B-29. Total graduate enroliment in Institutions of higher education by fleld: 1974-77

Field	1974	1975	1976	1977
Total, all studeñts'	1,194,090	1,267,537	1,089,290	1,090,463
Science and engineorings \qquad All other fields \qquad	$\begin{aligned} & 265,918 \\ & 928.172 \end{aligned}$	$\begin{aligned} & 293,612 \\ & 973, \bar{\theta} 25 \end{aligned}$	$\begin{aligned} & 297,402 \\ & 791,888 \end{aligned}$	$\begin{aligned} & 306,710 \\ & 763,753 \end{aligned}$

'At all graduate institutions, as reported by National Center for Education Statistics, HEW, Survey of Opening Fall Enrollment in Higher Educetion, annual series.
${ }^{\text {Th }}$ At cotorato-granting institutións only, as reported by National Science Foundation, Survey ol Graduale Science Student Support and Pôtdoctorals, ennual series. SOURCE: National Science Foundation

Table B-30. Graduate enroliment and academic employment in the sciences and engIneering by type of graduate Institution

Year	Total	Doctorategranting	Master'sgranting
Graduate enrollment, Fall semester:			
1974 :.,............................. 5.	(1)	265,918	(1)
	339,699	293,612	46,087
	345,998	297,402	48,596
	362,978	306,710	56,268
Academic employment, Jañuary:			
1975...	214,076	180,001	34,075
	218,979	185,836	33,143
	227,115	192,325	34,790
	238,053	198,872	39,181

${ }^{1}$ Not available for 1974.
SOURCE: National Sciencé Foundation

Table B-31. Number of degrees granted by Institutions of higher education by level and fieid: 1974-77

Level and field	Academic yeer			
	1973-74	1974-75	1975-76	1976-77
Bacheopr's and first-professional degreets, totāl \qquad	1,008,654	987,922	997,504	993,008
Sclènce and éngineeering Healith fields All othér fieldo	305,062 61,025 642,567	$\begin{array}{r} 294,920 \\ 70,056 \\ 622,944 \end{array}$	292,174 79,126 626,204	$\begin{array}{r} 286,543 \\ 82,378 \\ 622,087 \end{array}$
Master's degreeg, total	278,259	293,651	313,001	318.241
Science and engineering Heslith fields All other lields	$\begin{array}{r} 54,175 \\ 9,741 \\ 214,343 \end{array}$	$\begin{array}{r} 53,852 \\ 10,842 \\ 228,957 \end{array}$	$\begin{array}{r} 54,747 \\ 12,696 \\ 245,558 \end{array}$	$\begin{array}{r} 56,731 \\ 13,092 \\ 248,418 \end{array}$
Doctor's degrees. total	33,826	34,086	34,076	33,244
Science and engineerring Health fields All other fields	$\begin{array}{r} 17,665 \\ 578 \\ 15,383 \end{array}$	$\begin{array}{r} 17,784 \\ 618 \\ 15,684 \end{array}$	$\begin{array}{r} 17,288 \\ 577 \\ 16,211 \end{array}$	$\begin{array}{r} 16,937 \\ 538 \\ \mathbf{1 5 , 7 6 9} \end{array}$

SOURCE: National Center for Education Statistics, HEW

Table B-32. Graduate science and engineering enrollment by status and field; Fall 1974-77'

Status and field	1974	1975	1976	1977	Percent change		
					1974-75	1975-76	1976-77
Full time, total ...ani......	195,796	210,660	213.843	218,226	7.6	1.5	2.0
	34,169	37,660	36,838	37,816	10.2	-2.2	2.7
Phyical sclences n..................s.s.............................,	21,293	21,285	21,612	21,712	(2)	-2.2 1.5	2.7
Mattematical and computer acienceis .	8,114 13224	8,472 13,579	8.934	9,234	4.4	5.5	3.4
Life sclences ,,.,......s.s..........?	13,224 52,287	13,579 59.440	13,882	13.485	2.7	2.2	-2.9
	18,959	59,440 19,623	61,637 21,410	64,339 21,130	13.7 3.5	3.7	4.4
Soctal sclences ,...	- 47,738	19,623 50,601	21,410 49,530	21,130 50,501	3.5 6.0	9.1 -2.1	$=1.3$ 2.0
Pert time, total	70,120	82.952	83,559	88,484	18.3	. 7	5.9
	23,798	28,340	28,563	30,292	19,1	8	6.1
	3,223	3,137	-3,130	2,981	19.1 -2.8	-88	6,1 $=4.6$
Mathematical and computer aciences	1,640	1,892	1,924	1,920	-15.4	-1.7	$=4,6$ $=, 2$
Mathematical and computer sciencesr.s...................	6,426	6,758	6,622	6,519	5.1	-2.0	-1.6
	10,660 6,092	13,582	14,798	17,938	27.4	9.0	21.2
Social sclences ..,	6,092 18,274	7,321 21.922	6,778 21,744	6,667 22,167	20.2	$=7.4$	-1.6
		21.02	21,74	23,167	20.0	= 8	1.9

' At doctorate-granting institutions.
${ }^{3}$ Less than 0.05 -percent change.
SOURCEE: Natonal Science Foundation

Table B-33. Federal obligations to universities and colleges for fellowshlps, tralneeshlps, and training grants by field: FY 1971-77
(Dollars in thousands)

Fleid	1971	1973	1975	1977
Total	\$421,029	\$287,210	\$201,273	\$184,671
	22,085	12,631	10,821	10,015
Phybical eiclences,........................s...s,	15,821	3,901	3,238	3,675
	5,385	4,124	3,265	7,675 7
Mathematical and computer sclences;.,...	9,276	3,189	2.389	1,875
	225,177	179,222	135,600	1116799
Social sclences ;,.....s,	42,491 66,676	20,513 43,515	12,819	17,274
Other sciences, n.e.c.	34,118	20,115	120,243 2,876	21,755 10,514

SOURCE: National Science Foundation
Table B-34. Full-time graduate sclence and engineering enroliment by source of major support: Fall 1974-77'

Source	1974	1975	19776	1977	Percent change		
					1974-75	1975-76	1976-77
	195,798	210,660	213,843	218,226	7.6	1.5	2.0
Fedaral support	47,952	48,210	48,524	50,308	. 5	7	3.7
	75,395	77,125	79,330	80,509	2.3	2.9	1.5
Other outside support :m,ses.s.....	16,398	16,866	17,689	18,441	2.9	4.9	4.3
Seli-6upport	56,053	68,459	68,300	68,969	22.1	-. 2	1.0

'At doctorate-granting institutions.
${ }^{7}$ Includes suppori lrom State end local governments.
SOUACE: National Seience Foundation

Table B-35. Full-time graciuate sclence and engineering enroliment by type of major support: Fall 1974-77'

Type	1974	1975	1976	1977	Pērcount chagnige		
					1974-75	1975-76	1976-77
	195,798	210,660	213,843	218,226	7.6	1.5	2.0
Fellowahlps and traineeships	38,597	38.013	37,704	39,414	1.1	- 3.4	4,5
Fesearch aggigtentships	39,686	40,201	42,809	43,991	1.3	6.5	2.8
Teaching assistantahipss...s	46,403	47,560	48,566	48,837	2.5	2.1	. 6
Other types of gupport	71,112	83,886	84,764	85,984	18.0	1.0	1.4

${ }^{1}$ Al doctorate-granting institutions.
SOURCE: National Science Foundation

Table B-36. Full-time graduate science and engineering enrollment by sex and fleld: Fall 4974-77'

Sex and field	1974	1975	1976	1977	Percent change		
					1974-75	1975-76	1976-77
	195,798	210,660	213,843	218,226	7.6	1.5	2.0
	149,114	158,032	155,587	154.484	6.0	-1.5	-. 7
	32,704	35,645	34.689	35,210	9.0	= 2.7	1.5
	18,775	18,634	18,719	18,706	- 8	${ }^{2} .7$	- 1
	7,165	7,366	7.557	7,727	2.8	2.6	2.2
Mathematical and computer gelences	10.738	10,699	11,042	10,714	1.5	1.3	-3.0
	37,151	39,961	39,540	39,424	7.6	-1.1	- 3
	11,385	11,248	12,062	11,440	-1.2	7.2	-5.2
	31,196	34,279	31,978	31,263	9.9	-6.7	-2.2
	46,684	52,628	56,256	63,742	12.7	10.7	9.4
	1,485	2,015	2.149	2,606	35.7	6.7	21,3
Physicel sciences .n.w..........-i..............................	2.518	2,651	2,893	3,015	5.3	9.1	4.2
Environmental sciences	949	1,106	1,377	1,507	16.5	24,5	9.4
Mathematical and computer scienieges	2,486	2,680	2,840	2,771	7.8	6.0	-2.4
Psychology.	15,136 7,574	$\begin{array}{r}19,479 \\ \hline 8,375\end{array}$	22,097	24.915	28.7	13.4	12.8
Social sclences	7,574 16,536	8,375 16,322	9,348 17,552	9,690 19,238	10.6 $=1.3$	11.6 7.5	3.7 9.6

${ }^{1}$ At doctorate-granting institutions.
SOURCE: National Sceience Foundation

Table B-37. Doctorate reciplents in science and engineering by sex and field: June 1974-77

Sex and field	1974	1975	1976	1977	Percent change		
					1974-75	1975-76	1976-77
Total	19,086	19,048	18,790	18,281	-0.2	$=1.4$	-2.7
Ment total	16,362	16,047	15,628	14,989	-2.0	-2.6	- 4.1
Enginaering \qquad	3.110	2,909	2,738	2,567	-6.5	-5.9	$=6.2$
Phybical gciencat ...	2,895	2.793	2,615	2,475	-3.5	= 6.4	-5.4
	637	658	643	632	3.3	-2.3	-1.7
	1,081	1,039	890	831	-3.9	$=14.3$	-6.6
	3,935	3,940	3,892	3,810	1	- 1.2	-2,1
	1,796	1,876	1,932	1,879	4.5	3.0	-2.7
	2.928	2,832	2,918	2,795	- 3.3	3.0	- 4.2
Women, total	2,704	3,001	3,162	3,292	11.0	5.4	4.1
	34	50	53	74	47.1	6.0	39.6
Physical sciencess.	231	262	243	244	13.4	$=7.3$	- 4
Environmental acienceg ...,.,...................................	37	36	71	59	-2.7	97.2	$=16.9$
Mattematical and computer sciences .n.......................	115	110	113	128	-4.3	2.7	13.3
Líe sciences \qquad Psychology	855	944	949	957	10.4	. 5	. 8
Pfyciotogy .n.,...s...	791 641	873 726	946	1,081	10.4	8.4	14.3
Social sciences n.w,	641	726	787	749	13.3	8.4	$=4,8$

SOUACE: National Research Council, Survey of Earned Dociorates

Table B-38. Women in science and engineering by field

Fiêld	Full-time graduate enfollment, Fall 1977'		Doctorate recipientes, June 1977		Employed labor lorce,	
	Number	Percent distil: bution	Number	Percent distribution	Number	Porcent distribution
Total	63,742	100.0	3,292	100.0	231,500	100.0
Engineering..............................	2,605	4.1	74	2.2	19,600	8.6
Physical sciences	3,015	- 4.7	244	7.4	15,000	6.5
Environmental sciences , , momenos.	1,507	2.4	59	1.8	7,700	3.3
Mathematical and computer sclences \qquad	2.771	4.3	128	3.9	58,100	25.1
Life sciences :.s.........................	24,915	39.1	957	29.1	63,200	27.3
Psychology,	9,690	15.2	1,081	32.8	31,200	13.5
	19,238	30.2	749	22.8	36,500	15.8

[^36]Table B-39. Full-time graduate science and engineering enrollment by citizenship and field: Fall 1974-77

Citizenship end field	1974	1975	1976	1977	Percent change		
					1974 $=75$	1975-76	1976-77
	195,798	210,660	213,843	218,226	7.6	1.5	2.0
	164,017	177,457	179,346	181,226	8.2	1.1	1,0
Engineering	23,069	25,685	24,363	24,181	11.3	$=5.1$	-. 7
Physical sciences3.	16,827	16,891	17,173	17,146	. 4	- 1.7	-. 2
Mathematical siencosi...s...........................	7.252	7.564	7,960	8,159	4.3	5.2	2.5
Mathematical and computer sciences	10,760 45777	10,914	10,949	10,348	1.4	. 3	- 5.5
	45,777 18,408	52,927 19,043	54,885	57,398	15.6	3.7	4.6
Social sciences ..	18,408 41,924	19,043 44,433	20,833 43,183	20,511 43,483	3.4 6.0	9.4 -2.8	$\begin{array}{r}-1.5 \\ \hline .7\end{array}$
	31.781	33,203	34,497	37,000	4.5	3.9	7.3
Engineering \qquad Physical sciences	11,120	11,975	12.475	13,635	7.7	4.2	9.3
Physical sciences \qquad Environmental sciences	1,466 4,862	4,394	4.439	4.575	-1.6	1.0	3.1
Mạthematical and computer scieñees	862 2.464	908	974	1,075	5.3	7.3	10.4
Life sciences ,...s.	2,464 6,510	2,665 $\mathbf{6 , 5 1 3}$	2,933 6,752	3,137	8.2	- 10.1	7.0
Psychology , ,m,	6,510 551	6,513 580	$\begin{array}{r}6,752 \\ \mathbf{5 7 7} \\ \hline\end{array}$	6,941 619	121 5.3	3,7 $=-5$	2.8
Social sciences .,...	5;809	6,168	6.347	7,018	5.3 6.2	- 2.9	7.3 10.6

${ }^{1}$ At doctorate-granting instifutions.
Less than 0.05 percent change.
SOURCE; Natiọnal Science Foundation

Table B-40. Total enrollment in institutions of higher
education by status: Fall 1977

Status	Fall 1977	
	Number	Percent distribution
Total enrollment, all fields,	11,415,020	100.0
Full time \qquad Part time \qquad	$\begin{aligned} & 6,895,809 \\ & 4,519,211 \end{aligned}$	$\begin{aligned} & 60.4 \\ & 39.6 \end{aligned}$
Graduate enrollment, all fields	1,090,463	100.0
Full time \qquad Part time \qquad	$\begin{aligned} & 437,732 \\ & 652,731 \end{aligned}$	$\begin{aligned} & 40.1 \\ & 59.9 \end{aligned}$
Graduate enroliment. sciencelenginearing fields' \qquad	306.710	100.0
Full time \qquad Part time \qquad	$\begin{array}{r} 218,226 \\ 88,484 \end{array}$	$\begin{array}{r} 71.2 \\ 28.8 \end{array}$

${ }^{1}$ At doctorate-granting institutions.
SOURCE: National Center for Education Siatiotiog, HEW, and National Science Foundation

Table B-41. Graduate enrollment by status: Fall 1974-77

Status	1974	1975	1976	1977	Percent change		
					1974-75	1975-76	1976=77
Graduate enrollment; all fieldss.s...	1,194,090	1,267,537	1,089.290	1,090,463	6.2	$=14.1$	0.1
Full time Part time	$\begin{aligned} & 428.984 \\ & 765,106 \end{aligned}$	$\begin{aligned} & 454,599 \\ & 812,938 \end{aligned}$	432,960 $\mathbf{6 5 6 , 3 3 0}$	437,732 652,731	6.0 6.3	-4.8 -19.3	$\begin{array}{r} 1.1 \\ -.5 \end{array}$
Graduate enrollment, science and engineering fields ${ }^{\text {' }}$:...	265,918	293,612	297,402	306,710	10.4	1.3	3.1
Full time \qquad Part time \qquad	$\begin{array}{r} 195,798 \\ 70,120 \end{array}$	$\begin{array}{r} 210,660 \\ 82,952 \end{array}$	$\begin{array}{r} 213,843 \\ 83,559 \end{array}$	$\begin{array}{r} 218,226 \\ 88,484 \end{array}$	7.6 18.3	1.5 .7	$\begin{aligned} & 2.0 \\ & 5.9 \end{aligned}$

'At doctorate-granting institutions.
SOURCE: National Center for Education Statistics. HEW, and National Science Foundation

appendix c

reproduction of questionnaires and instructions

Scientific and Engineering Expenditures at Universities and Colleges,FY 1977 and InstructionsScientific and Engineering Personnel Employed at Universities and Colleges,46
January 1978 and Instructions - January 1078 and Instructions 50
Graduate Science Student Support and Postdoctorals, Fall 1977and Instructions64

NATIONAL SCIENCE FOUNDATION

Washington, D.C. 20550

SURVEY OF SCIENTIFIC AND ENGINEERING EXPENDITURES AT UNIVERSITIES AND COLLEGES, FY 1977
 (Current and Capital Expenditures for Research, Development, and Instruction in the Sciences and Engineering)

Organizations are requasted to complete and return this form to:

NATIONAL SCIENCE FOUNDATION
1800 G Strot, N,W.
Wathington, D.C. 20550
Attn: UNISG
This form should be returned by November 30,1977, Your cooperation in returning the survey questionnaire promptly is very important.

Financial data are requested for your institution's 1977 iseal year.

This information is solicited under the authority of the National Science Foundation Act of 1950, as amended. All information you provide will be used for statistical purposes only. Your response is entírely voluntery and your failure to provide some or all of the information will in no way adversely affect your institution.
All financial data requested on this form should be reported in thousands of dollars; for example, an expend= iture of $\$ 25,342$ should be rounded to the nearest thougand doliars and reported as $\$ 25$:

Where exact data are not available, estimates are acceptable, Your estimates will be better than ours.

Please correct if name or address has changed

Include data for branches and all organizational units of your institution, such as medical schools and agricultural experiment stations. Also include hospitals or clinics owned, operated, or controlled by universities, and integrated operationally with the clinical programs of your medical schools. Exclude data for federally funded research and development centers (FFRDC's). A separate questionnaire is ineluded in this pack. age if your institution administers an FFFDC. If you have añ questions please contact Jim Hoehn (202-634-4674).

Please note in space below:

(1) Any suggestions to improve the design of the survey questionnaire, (2) any suggestiones to improve the instruetions, or (3) any comments on signifieant change in R\&D in your institution,

	(Attach additional sheets, if necessary.)																						
PLEASE TYPE OR PRINT NAME OF PERSON SUBMITTING THIS FORM										title										$\begin{array}{\|l\|} \text { AREA } \\ \text { CODE } \end{array}$	EXCH	No.	EXT
																		I	II	I]	T		
	NAME OF PERSON WHO PREPARED THIS SUBMISSION (If different from above)										TITLE									$\begin{array}{\|l\|} \hline \text { AREA } \\ \text { CODE } \\ \hline \end{array}$	EXCH	NO.	EXt
					1				I	I								$1 T$	\square	T		T	TT
	Please check and correct if necessary the name and ar Iress : your institution shown on the mailing label.																			DATE			

ITEM 1. CURRENT EXPENDITURES FOR SEPARATELY BUDGETED RESEARCH AND DEVELOPMENT (R\&D) IN THE SCIENCES AND ENGINEERING, BY SOURCE OF FUNDS AND TYPE OF ACTIVITY, FY 1977 (Include indirect costs)

ITEM 1. INSTRUCTIONS

Separately budgeted research and development ineludes all funds expended for activities specifically organized to produce research outcomes and com missioned by an agency either extepnal to the institution or separately budgeted by an ofganizational unit withiñ the ingtitution. Include expenditures from both the uñéstriêted and restricted current fund accountr. Exclude training grante, public service grants, demonstration projects, etc.
Include in lines a through a and line g restricted funds which include those monies restricted by the sponsor as to the specific operating purpose for which they could be expended. The determination of restricted or unrestricted (institutional) funds reflects the ability of your institution to change the purpose for which the funds are expended without further authorization from the source of the monies. The restricted funds eategory of Federal, restrieted by them as to use, The funding source is determined funds received through appropriations, grantis, or contrabts from these sources and for R\&D even if your organization determines which projects by the grganization (e.g. Stategovernment, foundation, etc.) that designates the money Under a. Féderal Government
Under b. state

Under c, local government inglude funds designated for $\overline{\mathrm{R}} \overline{\boldsymbol{\alpha}} \overline{\underline{D}}$ by county, municipai, or other local governments and their agencies.
Under d. Foundations and voluntāy halth agencies inglude grants specified for R\&D. Funds from foundations which are affiliated with or grant is a unit of a State or local government shouded under f. Institutional funds. Funds specifieally designated for ReD and derived from a healih agency that is a uñit of a State or local government should be reported under State or loeal government.
Under e. Industry include all grants and contracts allocated to $\overline{\mathrm{A}} \mathrm{\beta}_{\mathrm{D}} \mathrm{D}$ by profitmaking organizations, whether engaged in production, distribution, re seareh, service, or other activities. Do not include grants and contracts from nonprofit foundations financed by industry, which should be reported under Foundations.

Under f. Institutional funds include any funds which the institution was free to designate for $\operatorname{Fi} \overline{\mathrm{B}} \mathrm{D}$ (inelude indirect costs). These funds mav include (1) Unrestricted or general-purpose State or local government appropriations; (2) general-purpose grants from industry, foundations, or other outside sources; (3) tuition and fees; (4) endowment income; and (5) the unreimbursed indirect costs incurred in association with R\& projects linanced by outside organizations (e.g., mandatory Federal cost sharing on grants, ete.).
If your institution now separately budgets what was previously classiffed as departmental researeh, these data should be included in line i, if your aceounts do not separately identily departmental research expenditures but include them as part of the instruction and departmental research account, these data should be reported in item 3 in accordance with the instructions.
Please exclude from your response any R\&D expenditures in the fields of education, law, humanities, music, the arts, physical education, library seience, and all other nonscience fields.

Total $\bar{A} A_{\mathrm{A}} \mathrm{D}$ expenditures reported iñ line 1100 column (1) and line 1400 column (1) should be the same.
Federally financed Rsup expenditures reported in line 1110 column (1) and line 1400 column (2) shouid be the same,

ITEM 2. TOTAL AND FEDERALLY FINANCED EXPENDITURES FOR SEPARATELY BUDGETED RESEARCH AND DEVELOPMENT, BY FIELD OF SCIENCE, FY 1977 (Include indirect costs)				
Field of science	Illustrative disciplines		Thousands of dollars	
			(1) Total	(2) Federal
a. ENGINEERING (TOTAL)	Aeronautical, agricultural, chemical, civil, electrical, industrial, mechanical, metallurgieal, mining, nucleaf, petroleum, bio- and biomedical, energy, textile, architecture	1410	\$	\$
b. PHYSICAL SCIENCES (TOTAL)		1420		
(1) Astronomy	Astrophysics, optical and radio, x-ray, gammayray, neutrino	1421		
(2) Chemistiry	Inorğanic, organo-metallic, organic, physical, analy fical, pharma= ceutical, pōlymer science (exclude biochemistry)	1422		
(3) Physics	Acoustics, atomic ānd molecular, condensed matter, elementary particles; nuclear structure, optiés, plasma	1423		
(4) Other	Used for multidisciplinãary prójects within physical sciencees and for disciplines not requested eeparately	1424		
g. ENVIAONMENTAL SCIENCES (TOTAL)	ATMOSPHERIC SCIENCES: Aeronomy, solar weather modification, meteorology, extraterrestrial atmospheres GEOLOGICAL SCIENCES: Engiñering geophysiçs. geofogy. geodesy, geomagnetism, hydrölogy, geochemistiy, pälẹomagnetigm, paleontology, physical geography, cartography, seismology, soil sciences OCEANOGRAPHY: Chemical, geological, physical, marine geo: physics, marine biology, biological oceanography	1430		
C. MATHEMATICAL AND COMPUTER SCIENCES (TOTAL)		1440		
(1) Mathematics	Algebra, analysis, applied mathematics, foundations and logic, geometry, numerical analysis, siatistics, topelogy	1441		
(2) Computer sciences	Design, development, and application of computer capabilities to data storage and manipulation, information seience	1442		
e. LIFE SCIENCES (TOTAL)		1450		
(1) Biological sciences	Anatomy, biochemistry, biophysics, biogeography, ecology, embryology, entomology, genetics, immunology, mierobiology, nutrition, parasitoology, pathology, pharmacoology, physical anthropology, physiology, botony, zoology	1451		
(2) Aggicicultural	Agricultural chemistry, agrōnomy, animal seience, conservation, dairy science, plant scienceé, range seience, wildlife	1452		
(3) Medical	Anesthesiology, cardiology, endocrinology, gastroenterology, hematology, neurology, obstetrics, ophthamology, preventive medicine and community health, psychiatry, radiology, surgery. veter inary mediciné, dentistry, pharmacy	1453		
(4) Other	Used for multidigiplinary projecte within lifee sciences	1454		
f: PSYCHOLOGY (TOTAL)	Animal behavior, clinieal, educational, experimental, human devalopment and personality, social	1460		
g. SOClAL SCIENCES (TOTAL)		1470		
(1) Economics	Econometrics, international, industrial, labor, agricultural, public finance and fiscal policy	1471		
(2) Political science	Regional studies, comparative government, international relations, legal systems, political theory, public administration	1472		
(3) Sociology	Comparative and historical, complex organizations, culture and social structure, demography, group interactions, social problems and welfare, theory	1473		
(4) Other	History of science, cultural anthropology, linguistics, socioeconomie geography, researeh in education	1474		
h. OTHER SCIENCES, ne,c. (TOTAL)"	To be used when the multidisciplinary and interdisciplinary aspects make the classification under one primary field impossible	$148 \overline{0}$		
i: TOTAL (SUM of a through h) Check to insure that column totals are identical with data reperted in item 1.		1400		

-PLEASE EXCLUDE FROM YOUR RESPONSE ANY R\&D EXPENDITURES IN THE FIELDS OF EDUCATION, LAW, HUMANITIES, MUSIC, THE AATS, PHYSICAL EDUCATION, LIBRARY SCIENCE, AND ALL OTHER NONSCIENCE FIELDS.

ITEM 3. CURĀENT EXPENDITURES FOR INSTRUCTION AND DEPARTMENTAL RESEARCH IN THE SCIENCES AND ENGINEERING, BY FIELD OF SCIENCE, FY 1977 (Direct expenditures only)
 COMPLETE ITEM 3 IF YOUR INSTITUTION GRANTS A DOCTORATE OR MASTER'S DEGREE IN EITHER THE SCIENCES OR ENGINEERING

ITEM 3. INSTRUCTIONS

Include the salaries of department heads, faculty members, secretaries and technieians; office and laboratory supplies; and expenditures for degree credit instructional programs in science and enginearing subjects. The time spent in supervising the thesis work of graduate students should be reported as an expenditure for instruetion, not for departmental research. Departimental research (nonsponsored research) is "personal" or "faculty" respeareh supported by General Funds of the department as a specifically absigned, departmentally planned, or mutually understood part of the faculty member's total activity. If departmental research expenditures are now separateiy budgeted at your institution, they should be repor ted in items 182 rather than in item 3.
Dōes your institution separately budget dẹartmental reséarch? YES \qquad beginning in 19 \qquad NO \qquad
If YES, are the expenditures for this item reported in items $1 \& 2$ Y YES NO
\qquad

ITEM 4. CAPITAL EXPENDITURES FOR SCIENTIFIC AND ENGINEERING FACILITIES AND EQUIPMENT FOR RESEARCH, DEVELOPMENT, AND INSTRUCTION, BY FIELD OF SCIENCE, FY 1977

ITEM 4. INSTRUCTIONS

Report funds for façilities which were in process or completed during FY 1977, Expenditures for gdministration buildings, steam plants, residence halls, and other such facilities should be excluded uniess utilized principally for research, development, or instruction in engineering or in the sciences. Land costs should be excluded. Exclude small equipment items in your current fund aceount cositing epproximately $\$ 200$ to $\$ 500$ or leşs, as déter $=$ mined by institutional policy.

Facilities and equipment expenditures include the following: (a) fixed equipment such as built-in equipment and furnishings: (b) movable scientifie equipment such as oscilloseopes; pulseheight analyzers; (c) movable furnishings such as desks; (d) architect's fees; site work, extension of utilities, and the building costs of service functions such as integral cafeterias and bookstores of a facility; (è) facilities constructed to house separate com= ponents such as medical schools and teaching hospitals; and (f) special separate facilities used to house scientific apparatus sueh as accelerators, oceanographic vessels, and computers.

SURVEY OF SCIENTIFIC AND ENGINEERING PERSONNEL EMPLOYED AT UNIVERSITIES AND COLLEGES, JANUARY 1978

Organizations are requested to complete and return this form to:

NATIONAL SCIENCE FOUNDATION 1800 G Street, N.W.
Washington, D.C. 20550 Attn: UNISG

This information is solicited under the Buthority of the Natinnal Selence Foundation Act of 1950 , as amended. All information you provide wili be uged for gutaticul purposén oñy. Your responge is entirely voluntary and your falure to provide some or all of the information will in no way advergely affert your ingtitition.

Name and address of institution:
(Please correct if name of address has changed)

This survey requests employment data as of January 1978. The completed 1978 questionnaire should be returned to NSF by March 31, 1978. Your cooperation in returning the survey questionnaire promptly will be appreciated. If you determine, however, that you cannot respond by March 31, please notify NSF and request an extension of time.

Please read the enclosed instructions before completing this form. If you have any questions about the completion of the form, contact Robert Loycano (202-634-4673). Where exact data are not available, use estimates. Please complete all items; estimates by college officials will be better than NSF estimates. Enter "O" as an item total (lines 2100; 2200, etc., are item totals) rather than leave the total blank.

All entries should be in whole numbers. Please do not enter decimals or fractions, except in column 5 of item 6 where 1 decimal place is optional.

Institutions of Higher Education

Include data for branches (including regional campuses) and all organizational units of your institution, such as a medical school or agricultural experiment station. Also include any hospital or clinic owned, operated, or controlled by the University, and integrated operationally with the clinical programs of your medical school. Exclude data for any federally funded research and development centers (FFRDC's) administered by your institution. (See below).

Please classify your institution according to (1) highest degree granted in the sciences or engineering and (2) primary administrative control.

Highest degree granted in the sciences or engineering during 1976-77	Check one	One example of a science or engineering field in which highest degree was awarded	Check primary administrative control of your institution	
Ph.D.	\square			
M.D., D. $\overline{\text { M }}$ S., etc.	\square		State	\square
Master's	\square		Local	\square
Bachelor's or equivalent	\square			\square
Degree other than in science or engineering	\square			
2 -year program	\square			

Federally Funded Research and
Development Centers (FFRDC's)
Separate forms have been mailed directly to all

FFRDC's administered by academic institutions. A list of these centers appears on page 2 of the Instructions and Definitions.

SECTION A. NUMBER OF SCIENTISTS $\&$ ND ENGINEERS, JANUARY 1978 (INCLUDE postdoctorals; EXCLUDE graduate students)

1tem	Fulf-time scientists and engineers, by field and function in which primarily employed (enter the totals of 1 a thru 1 g in hh); and total full-time equivalents ($F T E$), by function, January 1978 (enter in 1i)					
	FIELD OF EMPLOYMENT		TOTAL (1)	TEACHING (2)	$\begin{aligned} & \mathrm{R} \& \mathrm{D} \\ & (3) \end{aligned}$	Other activities (4)
	i. Enginears (total) (1) Aeronautisal a $_{\text {atronatical engincers }}$ (ㄱ) Chemical engineurs (3) Civil engincers (4) Electrical envineers (5) Nechanieg enpineers (6) Other engineers	2110				
		5111				
		2112				
		7113				
		5114				
		2115				
		2116				
	b. Physical sctentists (rotal) (1) Chemists (2) Physicists (3) Other physical suientist	2130				
		2131				
		2133				
		2173				
	E. Envirunmental sentists (total) (1) Earth scientists (2) Atmosphefie siturists	2130				
		2131				
		2132				
		2133				
	d. Wathematisal sumputer shentists tutah. . . (1) Mathematietane (exdude computer sientists) (2) Computer stentists lexitude prompammers).	2140				
		3141				
		2142				
	e. Life scientists (total) (1) Agricultural scientists (2) Biologieal selentists 13) Medical suientists ive instrutions, p, 1)	2130				
		2151				
		2152				
		2153				
	Social sedentists (total) tevelude historianal (1) Economists (2) Sociologists 13) Politieal scientists 14) Other sotial wientists.	2160				
		2170				
		3171				
		2172				
		2173				
		2174				
	h. Total headcount sum of a thrug) [/ \ldots	2100				
	i. FTE distitibution. by function b/	2190				
$\begin{gathered} \text { Item } \\ 2 . \end{gathered}$	Full-ime srientists and engineers, by highest earned degree ond function in which primarily employed, January 1978					
	HIGHEST EARNED DEGREE		TOTAL (1)	$\begin{aligned} & \text { TEACHING } \\ & \text { (2) } \end{aligned}$	R $\overline{\mathrm{K}} \mathrm{D}$ (3)	Other activities (4)
	Docthrate holders by ivpe d. Ph is Su. M.D. D.D.S., DV.W. © Mater: e. Wahelar's of the equivalemt f. Total cum ut a thrue)	2210				
		2220				
		2230				
		2240				
		759				
		2901				

$\begin{gathered} \text { tam } \\ 3 . \end{gathered}$	Part-time scientists and engineers, by field and function in which primarily employed (enter the totals of 3 a thru 3 g in 3 h): and total FTE's by function, January 1978 (enter in 3 i) (INCLUDE postodoctorals; EXCLUDE graduate students)					
	FIELD OF EMPLOYMENT		TOTAL (1)	TEACHING (2)	R\&D (3)	Other activities (4)
	a. Engineers (total) (1) Aeronautical \& astronautical engineers (2) Chemical engineers (3) Civil engineers (4) Electrical engineers (5) Mechanical engineers (6) Other engineers	2310				
		2311				
		2312				
		2313				
		2314				
		2315				
		2316				
	b. Physical seientists (total) (1) Chemists (2) Physicists (3) Other physical scienti	2320				
		2321				
		2322				
		2323				
	c. Environmental scientists (total) (1) Earth scientists (2) Atmospheric scientists (3) Oceanographers	2330				
		2331				
		2332				
		2333				
	d. Mathematical \& computer scientists (total) . . . (1) Mathematicians (exclude computer scientists) (2) Computer scienists (exclude programmers)	2340				
		2341				
		2342				
	e. Life scientists (total) (1) Agricultural scientists (2) Biological scientists (3) Medical scientists (see instructions, p.1.)	2350				
		2351				
		2352				
		2353				
	f. Psychologists (total)	2360				
	g. Social scientists (total) (exclude historians) (1) Economists (2) Sociologists (3) Political scientists (4) Other social scientists	2370				
		3371				
		2372				
		2373				
		2374				
	h. Total headcount (sum of a thru g) a/	2300				
	i. FTE distribution, by function by	2390				
Itom	Part-time scientists and engineers, by highest earned degree and function in which primarily employed, January 1978					
	HIGHEST EARNED DEGREE		TOTAL (1)	TEACHING (2)	R\&D (3)	Other activities (4)
	Doctorate holders, by type a. Ph.D. or Sc.D. b. Ed.D. c. M.D., D.D.S., D.V.M., etc. d. Master's e. Bachelor's or the equivalent f. Total (sum of a thrue)	$2+10$				
		2420				
		2430				
		3440				
		2450				
		3400				

3/ Totals in line 3 h should be the same as the corresponding totals in line 4 f .
b/ The totals in item 3 converting figures on partotime employment into FTE 's will necessarily differ from headcount totals in line 3 h .

$\begin{array}{\|l} \hline \text { Item } \\ 5 \\ \hline \end{array}$	Full-time scientists and engineers, by field in which primarily employed, and sex, January 1978 (Totals reported in item 5 , column 1 , should equal the totals reported in item 1 , column 1.)				
	FIELID OF EMPLOYMENT		TOTAL (I)	MEN (2)	WOMEN (3)
	4. Engineers (total)	2610			
	(1) Aeronautical $\&$ astronautical	2611			
	(2) Chemieal engineers	2612			
	(3) Civil eñgneers	2613			
	(4) Electrical engineers	2614			
	(5) Mechanical engineers	2615			
	(6) Other engineers	2616			
	b. Physical scientists (total)	2620			
	(1) Chemists	2621			
	(2) Physicists.	2622			
	(3) Other physical scientists	2623			
	c. Environmental scientists (total)	2630			
	(1) Earth selentists	2631			
	(2) Atmospheric scientists	2532			
	(3) Oceañographers	2633			
	d. Mathematical \& computer scientists (total) . . .	2640			
	(1) Mitheñaticians (exclude computer scientists)	2641			
	(2) Computer scientists (exclude progrimmèrs)	2642			
	e, Life scientists (total)	2650			
	(1) Agncultural scientists	2651			
	(2) Biological scientists	2652			
	(3) Medieal scientists (see instructions, p.1.) :	2653			
	f. Psychologists (total)	2660			
	g . Social silentists (total) (exclude historians)	2670			
	(1) Eeonomists	2671			
	(2) Sociologists	2672			
	(3) Political scientisis	$\underline{2673}$			
	(4) Other social scientists	2674			
	h. Total headcount (sum of a thrig).	2600			

$\begin{array}{\|c\|} \hline \text { tem } \\ 6 \end{array}$	Scientists and engineers, by field in which primarily employed, employment status, and total full-time equivalents (F TE's) by field, January 1978						
	NOTE: This information is needed by NSF and others interested in the current status and trends in the level of actadernic research, by field.						
	FIELD OF EMPLOYMENT		Headeounts			Estimated full-time-equivalents (FTE)	
			Total (1)	Full time ${ }^{\text {a }}$ (2)	Part time ${ }^{b}$ (3)	Total FTE's (Include all activities, eg, teaching. R\&Detc., of all individuals reported in col. 1) (4)	Percent of total FTE's devoted to R\&D (5)
	a. Engineers (total) (1) Aeronautical \& astronautical engineers (2) Chemical engineers (3) Civil engineers (4) Electrical engineers (5) Mechanical engineers (6) Other engineers	2710					\%
		2711					\%
		2712					\%
		2713					\%
		2714					$\%$
		2715					$\%$
		2716					\%
	b. Physical scientists (total) (1) Chemists	2720					\%
	(1) Chemists	2721					\%
	(2) Physicists :	2722					$\%$
	(3) Other physical seientists	2723					\%
	e. Environmental scientists (totai)	2730					\%
	(1) Earth scientists . . .	2731					\%
	(2) Atmospheric scientists : .	2732					\%
		2733					\%
	d. Mathematical \& computer seientists (total) . . .	2740					\%
	(1) Mathematicians (exclude computer seientists) .	$\frac{2741}{2742}$					\%
	(2) Computer seientists (exclude programmers).....	2742					\%
	e. Life selentists (total). .	2750					\%
	(1) Agricultural scientists	2751					\%
	(2) Biological scientists	2752					\%
	- (3) Medical scientists (see instructions, P. 1)	2753					\%
	f, Psychologists (total)	2760					\%
	g. Social scientists (total) (exclude historians)......	2770					\%
	(1) Economists . .	$\underline{2771}$					\%
	(2) Sociologists	$\underline{\underline{2772}}$					\%
	(3) Poititical scientists	2773					8
	(4) Other social scientists	2774					\%
	h. Total (sum of a thiu g).	2700					\%

NOTE: If you presented data in column 5 in terms of absolute numbers instead of percentages, please check this box
3/Totals in column 2 should be the same as corresponding totals in column 1 of item 1 .
b/Totals in column 3 should be the same as corfesponding totals in column 1 of item 3 .

SECTION B. NUMBER OF TECHNICIANS EMPLOYED IN THE SCIENCES AND ENGINEERING, January 1978

63

SURVEY OF SCIENTIFIC AND ENGINEERING PERSONNEL EMPLOYED AT UNIVERSITIES AND COLLEGES, JANUARY 1978

INSTRUCTIONS AND DEFINITIONS

The National Science Foundation requests your cooperation in completing the attached questionnaire covering the personnel characteristics of your institution as they relate to the sciences and engineering. This form requests employment data as of January 1978. The questionnaire should be completed and returned to NSF by March 31, 1978. If you determine, however, that you will not be able to respond by that date, please notify NSF and request an extension of time.

This survey is similar to that conducted by this office each year. The major difference this year is the deletion of the question (formerly item 5) on Ph.D./Sc.D.'s by field and employment status and the removal of the "optional" designation for the item requesting FTE data by field, (formerly item 7).

Where data reported in the current survey differ significantly from those reported in the previous survey, please indicate the reasons for the difference, such as "opening of new medical school," etc., at the end of the questionnaire in the "Remarks" section, or on a separate sheet of paper.
If you have any questions regarding informa= tion requested on this form, write or telephone Mr. Robert Loycano at the Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, National Science Foundation, 1800 G Street, N.W., Room L-602, Washington, D.C. 20550 (Telephone: 202/6344673). Additional forms, as well as copies of previous responses, may be obtained by writing to the above address.

Institutions of Higher Education

Academic institutions should include in the form for the parent irstitution data on
professional and technical personnel employed in the sciences and engineering in all branches and other units of the parentinstitution. Include regional campuses, medical school, or an agricultural experiment station, but exclude an associated federally funded research and development center (FFRDC). FFRDC's are to report their data separately from the administering university.
Include all personnel who were paid a salary or stipend, including postdoctorals, and other staff, such as members of religious orders, who received no remuneration while employed at the institution.
Exclude: (1) Personnel on sabbatical or other leavestatus; (2) personnel employed in branches of your institution located in foreign countries; (3) unpaid voluntary staff; (4) student health service personnel; and (5) those agricultural extension personnel primarily involved in home economics and $4-\mathrm{H}$ youth programs.

Medical Schools

Incorporate data for medical schools in the data for the parent institution. Medical schōols are those 2- or 4 -year schools of medicine approved by the Council on Medical Education and Hospitals and the Association of American Medical Colleges. Include: (1) Teaching and R\&D functions of hospitals or clinics owned, operated, or controlled by universities and integrated operationally with the clinical programs of their medical schools; (2) research bureaus or institutes which are integral parts of medical schools; (3) research bureaus and institutes which are nonuniversity owned but are affiliated with the medical school and any university bureaus, and institutes which may be outside the departmental structure of univer-
sities, but whose senior research staff members hold teaching appointments with medical schools.
Personnel employed at such organizations that are to be reported in the survey include all M.D.'s, D.D.S.'s, etc., with faculty or academic appointments. Typical among these are physicians, dentists, public health specialists, pharmacists, etc., who spend the greatest proportion of their time in teaching, clinical investigation, or other $R \& D$ activities.
Exclude: (1)All medical practitioners, interns, residents, and clinical fellows without faculty or academic appointments; (2) scientists whose primary employment is at independent hospitals even though they may perform some teaching or research functions for your institution through cooperative agreements; (3) nurses; (4) some allied health professionals primarily involved in direct patient care, such as optometrists, nurse anesthetists, occupational therapists, and physical therapists; and, (5) unpaid voluntary staff at medical or dental schools.

Federally Funded Research and Development Centers (FFRDC's)

For purposes of this survey, FFRDC's are defined as R\&D organizations exclusively or substantially financed by the Government and administered on a contractual basis by educational institutions or other organizations. The following is a current list of FFRDC's administered by universities and colleges:

[^37]
Data Elements Required to Complete This Survey

If the following seven characteristics are known for each science and engineering employee, the request can be substantially completed without estimates. The characteristics are further described elsewhere in the instructions.

1. Scope of personnel included:
a. Scientists and engineers
b. Science and engineering technicians
2. Assignment status:
a. Full time
b. Part time
3. Field of employment (22 detailed field ε in 7 broad groupings)
4. Full-time-equivalents (FTE's)
5. Function:
a. Teaching
b. Research and development
c. Other science and engineering activities
6. Highest earned degree
a. Ph. D. or Sc. D.
b. Ed. D.
c. M. D., D.D.S., D.V.M., etc.
d. Master's
e. Bachelor's or its equivalent
7. Classification of scientists and engineers by sex.

Classification of Fields of Employment in the Sciences and Engineering

Listed below are the broad and detailed fields of employment corresponding to those shown on the questionnaire with illustrative disciplines in each field.

Please classify persons (including those employed in interdisciplinary or multidisciplinary specializations) in the listed fields with which their activities (teaching, research, or other) are most closely identified. In the case of a scientist employed in a general category such as science education, he should be reported in the field most closely related to the academic requirements of his position-such as mathematics, sociology, or psychology.
Because of the importance of academic departments in the organizational structure and, thus, in the information systems of institutions of higher education, many institutions must report individuals in terms of
the departmental assignment shown in their personnel information systems. In some in stances, the designated department will not necessarily be the same as the field in which an individual is actually employed.

Because of the departmental structure, it is important that respondents include in the survey organizational units that are not part of any academic department. For example, scientists and engineers employed at a computer center that is not affiliated with a particular academic department should be included in the survey.

ENGINEERING

Aeronautical \& Astronomical: aerodynamies, aeropace, space technology
Chemical: ceramic, petroleum, petroleum refining process Civil: architectural, hydraulic, hydrologic, marine, sanitary and environmental, 白ructural, transportation
Electrical: communication, electronic, power
Mechanical: engineering mechanics
Other Engineering: agricultural, industrial and management, metallurgical and materials, mining, nuclear, ocean engineering systems, textile, welding, interdisciplinary fields for the training of technicians.

PHYSICAL SCIENCES

Chemistry: analytical, inorganic, organometallic, organic. pharmaceutical, physical, polymer science(exclude biochemistry)
Physics: acoustics, atomic and molecular, condensed matter, elementary particles, nuclear structure, optics, plasma
Other Physical Sciences: astronomy (laboratory astrophysics. optical astronomy, radio astronomy, theoretical astrophysics, X-ray, gamma-ray, neutrino astronomy), metallurgy, interdisciplinary fields for the training of technicians

ENVIRONMENTAL SCIENCES (TERRESTRIAL AND EXTRATERRESTRIAL)

Earth Sciences: engineering geophysics, general geology, geodeày and gravity, geomagnetism, hydrology, inorganic geochemistry, isotopic geochemistry, organic geochemistry, lab geophysics, paleomagnetism, paleontology, physical geography and cartography, seismology
Atmospheric Sciences: aeronomy, solar, weather modification, extraterrestrial atmospheres, meteorology Oceanography: biological oceanography, chemical oceanography, geological oceanography, phyaical oceanography, marine geophysics

MATHEMATICAL AND COMPUTER SCIENCES

Mathematics: algebra, analysis, applied mathematics, foundations and logic, geometry, numerical analysis, atatiatica, topology

Computer Sciences: computer programming, ${ }^{\text {i }}$ computer and information sciences (general); design, development. and application of computer capabilities to data storage and manipulation; information sciences and systems; syatems analysis

LIFE SCIENCES

Agricultural Sciences: agronomy, animal science, dairy science, food science and technology, forestry, horticulture. poultry science
Biological Sciences: anatomy, bacteriology, biochemistry, biogeography, biophysics, ecology, em bryology, entomology, evolutionary biology, genetics, immunology, microbiology, nutrition and metabolism. parasitology. pathology, pharmacology, physical anthropology, physiology, plant sciences, radiobiology, systematics, zoology, interdisciplinary fields for the training of technicians
Medical Sciences: Internal medicine, neurology, ophthalmology, preventive medicine and public health. psychiatry, radiology, surgery, veterinary medicine, dentistry, pharmacy, podiatry, anesthesiology, chemotherapy, dermatology, geriatrics, nuclear medicine, obstetrics; gynecology, oncology, pediatrics, physical medicine and rehabilitation, interdisciplinary fields for the training of technicians ${ }^{z}$

PSYCHOLOGY: animal behavior; clinical psychology; comparative psychology, counseling and guidance: development and personality; educational, personnel, vocational psychology and testing; experimental psychology; ethology; industrial and engineering psychology; social psychology

SOCIAL SCIENCES

Economics: agricultural economics; econometrics and economic statistics; history of economic thought; international economics; industrial, labor and agricultural economics; macroeconomics; microeconomics; public finance and fiscal policy; theory; economic systems and development
Sociology: comparative and historical, complex organizations, culture and social structure, demography, group interactions, social problems and social welfare. sociological theory
Political Science: area or regional studies, comparative government, history of political ideas, international relations and law, national, political and legal systems; political theory. public administration

Other Social Sciences: cultural anthropology, criminology, history of science, linguistics, socioeconomic geography, urban studies, research in education, and regearch in law, i.e., attempt to assesg impact of legal systems and practices on society.

[^38]
Section A-Number of Scientists and Engineers, January 1978

(Includes postdoctorals and excludes Fraduate students)

This section requests data on full- and parttime employed scientists and engineers. Scientists and engineers include faculty members, postdoctorals, and other professionals working in the sciences and engineering at your institution, including those in research administration. These professionals work at a level at which the knowledge acquired by academic training equal to a bachelor's degree is essential in the performance of duties. Graduate students are not considered scientists and engineers for survey purposes.
Two possible criteria used in determining whether an individual is employed full time are (1) his/her working 40 hours per week; or (2) his/her teaching 12 credit hours per week. (The preceding serve as illustrations only; the "fulltime" workload may vary somewhat from institution to institution.)
Avoid double counting; if an individual is a full-time employee, but his assignment involves more than 1 department or more than 1 campus, he/she should be counted as 1 full-timer in his/her actual or primary field of employment and at his/her primary campus location.

Item 1. Full-time scientists and engineers, by field and function in which primarily employed, January 1978.
In items la to 1 h , the functional classification of professional personnel into teaching (column 2), R\&D (column 3), and other science and engineering activities (column 4), should be based on the function in which the person is primarily engaged or employed at the institution. For example, a person engaged in two or all three of the specified functional categories should be classified in the function in which he spends the largest proportion of his time. Exclude outside consulting work and teaching not performed under the auspices of your institution.

In classifying personnel by function, note that determinations made solely on the basis of job titles may produce a significant bias primarily toward teaching. It is important to recognize that persons with professorial rank may also be engaged in research.

In classifying an individual under a particular category (teaching, research and development, or other science and engineering activities), take into consideration all official activities even if carried on in a school or department other than the one in which he holds his principal appointment.

Teaching (column 2) is defined as encompassing those activities connected with degreecredit courses or which are intended to lead ultimately to the granting of degrees or certificates or to professional certification or licensing.
Include under "teaching" any acadermic administrator-such as the President, a Dean, or a department chairman-who holds a science or engineering degree, unless the individual is primarily involved in the administration of R\&D activities. If the individual cannot be identified with one specific discipline, report the field of his highest earned degree. Administrators primarily involved in R\&D ac tivities should be reported in the "R\&D" column.
Include personnel engaged in instruction of: first-year trainees, residents, and other professional personnel receiving advanced training such as postdoctoral fellows or trainees.
Time spent by faculty or other staff members in supervising the thesis work of graduate students is considered to be part of the teaching function.

Exclude instructors in nursing programs, dental hygiene, etc., specialties that relate primarily to direct patient care.

Research and development (column 3) includes basic and applied research in the sciences and engineering and design and development of prototypes and processes.

Research is a systematic, intensive study directed toward fuller knowledge of the subject studied. Research includes activities that are separately bulgeted, including all activities specifically organized to produce research outcomes and commissioned by an agency either external to the institution or separately budgeted by an organizational unit within the institution. This activity inc!, les all
departmental research that is separately budgeted. Include in this function the preparation for publication of books and papers describing the results of the specific research and development. Also include the administration of research and development.

Development is the systematic use of knowledge directed toward the design and production of useful prototypes, materials, devices, systems, methods, or processes. It does not include quality control or routine product testing.

Under Other science and engineering activities (column 4) report all professional personnel not primarily employed in teaching or research and development, as defined above. Examples of such activities are agricultural demonstration work not specifically excluded on page 1; adult education (if not for degree credit); dissemination of scientific information; and student counseling by individuals with degrees in psychology. Exclude hospital employees predominantly involved in patient services, Student Health Service professionals, and other individuals that are not primarily engaged in science or engineering activities. Do not use this category to report individuals for which there is difficulty in determining their primary function. It is preferable that you classify each person in the most appropriate functional category according to your best estimate.

Full-time-equivalent distribution, by function. In line li, apportion staff members across the three functions on the basis of the proportion of effort or time spent in each of the functions, thus correcting for the "primarily engaged" headcount data reported in line 1 h . For example, an individual devoting three-fourths of his time to teaching and one-fourth to research and development should be counted as 0.75 in teaching and 0.25 in research and development. The FTE values should then be accumulated for each function. This sum should then be rounded to the nearest whole number before entering the total on the questionnaire. In line 1i, totals entered in columns 2,3 , and 4 should add to the total in column 1.

Item 2. Full-time scientists and engineers, by highest earned degree and function in which primarily employed, January 1978.
For the purposes of this survey, carned degrees are classified in five categories:
a. "Ph.D. or Sc.D." degrees (inciude all such earned degrees.) Include individuals holding both the Ph.D. (or Sc.D.) degree and any other doctorate degree.
b. "Ed.D."(includes all such earned degrees.)
c. "M.D., D.D.S., D.V.M., etc." includes individuals whose highest earned degrees are first-professional medical degrees that represent the completion of the academic requirements based on programs that require at least 2 academic years of previous college work for entrance and require a total of at least 6 academic years of college work for completion. Specifically include in line 2c first-professional degrees in Medicine (M.D.), Dentistry (D.D.S. or D.M.D.), Veterinary Medicine (D.V.M.), Chiropody or Podiatry (D.S.C. or D.P.), and Osteopathy (D.O.). Individuals holding both the Ph.D. (Sc.D.) degree and a first-professional degree such as the M.D., should be included in line $2 a$ as mentioned in (a) above.
d. "Master's" degrees includes all degrees above the bachelor's and first-professional degree and other than the doctorate degrees reported between lines 2 a and 2 c .
e. "Bachelor's or the equivalent" degrees includes all individuals whose highest earned degree is the bachelor's degree or a 4 - or 5 -year first-professional degree, or who have the equivalent in experience, even if they have not earned such a degree (line 2e).

Item 3. Part-time scientists and engineers, by field and function in which primarily employed, January 1978.
Instructions for item 1 relating to classification by field and function also relate to part-time professional staff in item 3.

In estimating the full-time-equivalents of part-time personnel in line 3 i, take into account both the overall workload and the proportion of time spent on each of the three functions of activity. For example, if full-time workload is 40 hours per week, and an individual is estimated to spend 10 hours on teaching and related duties and 6 hours on research, his FTE values would be teaching-. 25 (10/40); R\&D-. 15 (6/40). The FTE values should be accumulated for each function and rounded to the nearest whole number before entering the total on the questionnaire. The FTE values entered in columns 2, 3, and 4 should then be summed to arrive at the total to be entered in column 1 .

Item 4. Part-time scientists and engineers, by highest earned degree and function in which primarily employed, January 1978.
Instructions for item 2 relating to the classification by field and highest earned degree also relate to part-time professional staff in item 4.

Item 5. Full-time scientists and engineers, by field in which primarily employed and sex, January 1978.

Institutions are requested to report total fulltime scientists and engineers, by sex and field in which primarily employed. Data in column 1 (total of men and women) should equal data shown in item 1, column 1.

Item 6. Scientists and engineers, by field in which primarily employed, employment status, and full-time-equivalents (FTE's), January 1978.

Data in columns 1, 2, and 3 are derived from
data reported in column 1 of items 1 and 3 . To estimate total full-time-equivalents (FTE's) in column 4, take into account both allocation of effort, by field, and proportion of full-time workload accounted for by part-time personnel. FTE's in column 5 should reflect research effort of both full- and part-time professional personnel.
The following example showing how data might be reported in columns 1 through is is included for illustrative purposes only. For the sake of this computation, it is assumed that the data are estimated on the basis of detailed records on faculty activity. The Foundation recognizes, however, that the information systems at many academic institutions do not, in fact, yield data at this level of detail. In such cases, or in instances where institutions would be required to expend an excessive effort to produce the information in the desired format, your best estimates on an alternative basis would be completely acceptable.

Example

If your institution employs:
20 full-time chemical engineers
10 part-time chemiscal engineers
30
4 full-time electrical engineers
4 part-time electrical engineers 8

And:
Of the 20 full-time chemical engineers, 6 have split appointments ($50-50$ basis) with the electrical engineering department; thus, 14 are employed solely as chemical engineers.

All part-time personnel carry, on the average, one-third the normal workload.

Concerning R\&D effort, 12 of the 20 full-time chemical engineers and 2 of the 4 full-time engineers expend, on the average, one-fourth of their time on R\&D activities.

Then, the data in lines 2712 (chemical engineers) and 2714 (electrical engineers) should be estimated as follows:

Item 6

Line	Total Headcount (Col. 1)	Full time (Col. 2)	Part time (Col. 3)	Total FTE' (Col. 4)	R\&D FTE's (as percent of col. 4) (Col. Б)
```2712 (chemical engineerg) ................. 9714 (electrical```	30	20	10	${ }^{120}$	${ }^{3} 15$
engineers) . . . . . . . . . . . . . .	8	4	4	${ }^{3} 8$	${ }^{4} 6$


${ }^{2}$ Computed as follows: $4+(.50 \times 6) \div(.33 \times 4)=8.33$
${ }^{3}$ Computed as followes . $25 \times 12 \equiv 3 ; 3 \div 20=.15 \equiv 15 \%$
${ }^{4}$ Computed as follows: $25 \times 2=50 ; 50 \div 8 \equiv, 06 \equiv 6 \%$

## Section B-Number of Technicians Employed in the Sciences and Engineering, January 1978

Item 7. Technicians, by field and function in which primarily employed, January 1978.

Technicians include all persons employed in positions which involve technical work at a level requiring knowledge in any of the fields of engineering, mathematics, physical sciences, environmental sciences, life sciences, psychology, or social sciences comparable to that acquired through formal post-high school training (less than a bachelor's degree), such as that obtained at technical institutes and junior colleges or through equivalent on-the-job training or experience. All personnel performing the
duties described above should be reported as technicians even if they hold a bachelor's or higher degree. Some typical job titles include laboratory technician or assistant, physical science aide, engineering aide, statistical aide, draftsman, and computer programmer.
Exclude graduate students; technicians involved primarily in patient care service in university affiliated hospitals; and craftsmen such as electricians, carpenters, machinists, etc. In the case where undergraduate students, juniors or seniors, are employed in R\&D activities, they may, where applicable, be included as technicians.


INOTE：IF YOUR DEPARTMENT DOES NOF ENBOLL GAADUATE STUDENTSS，PLEASE MOVE TOI IFEM 7 EELOW）

for aduated degrees（mater＇s and doctorte）  			STUDENTS RECEIVING FINANCIAL ASSISTANEE								SELE ${ }^{F}$   SUPRORTE STUDENTS lincluding lodft and fatilly soutces）	
			FEDERAL SOURCE（Excluding loans）									
	LEVEL OF STUDY					Natlonal	Other	Institu－		Othis		
MECHANISMS OF SUPPQRT			Dapartment   of   Deftenfisf   （A）	Matlonail lastitutes of Hedth （国）	Other OHEW   （C）	Sciences Foundation   （D）	Fedderal 590 （E）	Eubport   （F）	Fortegn fourcos   （G）	U．S． soutcel $\frac{2}{2}$   （H）		
Graduato failowshlos and trainoestips	Frrsty yid	（1）										
	隹yond first	（2）										
G̣trduate reforch  	Firsty yeir	（3）										
	Bryond lirst	（4）										
Graduat tol tobling asistantshlps	first year	（5）										
		（6）										
Othep typas af  	First yegr	（7）										
	Eayond first	（阿										
TOFAL		（9）										
For eash total on Hine（9）hoew many afe WOMEN？	Fiag year	（10）										
	Beyond flist	（11）										

FOREGON STUDENTE
（12）
of thi filitime giduate students shown In Ine（g），tolumn（J）
how miny are FOREIGN sudenes？

1／Intud suffert Poom this university and State and locil governmemits．

7．POSTOOCTORALS AND／OR RESEARCH ASSOCIATES FALL 1977				
SOURCE OF SUPPORT			TOTAL   ［5и而 0 ！   （A）thru（C）	01 th TOTAL in column D ， how nany are FOREIGN？
Fideral		$\begin{aligned} & \text { Nōn. } \\ & \text { Fedeficil } \end{aligned}$		
Felowitipt trininestion	Repearch atioctate			
（A）	（倍）	（6）	（0）	（E）

## INSTRUCTIONS FOR COMPLETING THE DEPARTMENTAL DATA SHEET, FALL 1977

## General

Information supplied by your depart ment on a Depart mental Data Sheet (NSF Form 812) should reflect enrollment and postdoctoral appointments in fall 1977. A Form 812 is to be completed by each science and engineering depariment that supplied similar data in our 1976 survey or by uny newly formed departments or any departments that were in= advertently omitted last year. Alist of departments for which data were submitted in 1976 has been provided to your Survey Coordinator on NSF Form 811.
A graduate student is defined as a student enrolled for credit in an advanced-degree programleading to a master's or Ph.D. degree. M.D., D.V.M. or D.D.S. candidates, interns, inil residents should NOT be reported UNLESS they are concurrently working for a master's or Ph. D. Individuils who already hold an M.D., D.V.M. or D.D.S., master's. or Ph.D. degree but who are working on ANOTHER master's or Ph.D. degree are to be counted as graduate students, either full or part time. DO NO" report such individuals as postloctorals in item 7.

Graduate students performing thesis or dissertation research away from the campus at Government and contractor-owned facilities in the United States are to be included as long as they are enrolled for credit in an advanced degree program. Sludentes enrolled at a branch or extension center in a foreign country are to be EXCLUDED.
A graduate student, whether full- or part-time, should be reported inqualy one department If any_students or posidoc: torals are in interdisciplinary programs. please coordinate your response with the other participating departments. so that each student or postdoctoral will be counted only once.

Care should be taken to submil as complete and accurate a report as possible so that followup procedures with your institution may be reduced to a minimum, and more timely statistics can be made available. If there are any questions concerning your response, please conlact:

```
Tele Sec Data Preparation Division
1725 K Street, N.W., Suite 16
Washington, D.C. 2036
```

Or call (collect): (202)-223-2651

## Item Instructions

HIGHEST DEGREE PROGRAM OFFERED, item 4: Check the box which refers to the HIGHEST DEGREE program offered by this science department in fall 1977:
FULL-TIME GRADUATE STUDENTS, item 5: A full-time graduate student is defined as a student enrolled for credit in a master's or Ph.D. degree program (not a regular staff
member) who is engaged full time in training activities in his field of science; these activities may embrace any appropriate combination of study, teaching, and research, depending upon YOUR INSTITUTION'S OWN POLICY. If your department has no full-time graduate students, write "NONE" in item 5 and move to item 6.
MECHANISMS OF SUPPORT, item 5. lines 1-8: Report each full-time graduate student according to the TYPE OF MAIOR SUPPORT received in the fall of 1977. Students should be reported as receiving a fellowship or traineeship in lines 1 and 2, if this mechanism constitutes the major source of his support. A student receiving primary support from an assistantship should be classified as a research assistant in lines 3 and 4, or as a teaching assistant in liness 5 and 6 , according to how each spends the majority of his time, e.g., a graduate assistant devoting most of his time to teaching should be classified as a graduate teaching assistant. All other full-time sludents should be reported in lines 7 and 8 .
LEVEL OF STUDY, FIRST-YEAR AND BEYOND-FIRST, items 5 \& 6: A FIRST=YEAR graduate student is defined as one who will have completed LESS THAN A FULL YEAR of praduate study as of the beginning of the fall term in 1977. All oiher graduate students should be considered BEYOND THEIR FIRST YEAR.

STUDENTS RECEIVING FINANCIAL ASSISTANGE, item 5 , columns (A) thru (H): Report the number of full-time graduate students in the appropriate column according to the sourse of the largest portion of their support. In determining the source of major support, consider only tuition and other intademic expenses. If a graduate sludent receives stipend support from more than one source, choose the MAJOR category of support.
FEDERAL SOURCES, Columns (A) thru (E): Report the number of full-time graduate students in the appropriale column where they receive the largest portion of their support. Full-time graduate students receiving the largent portion of their support from Federal Government LOANS should be reported as SELF-SUPPORTED, column I.
Department of Defense (DOD), column (A): Report fulltime graduate students receiving support from the Department of the Army, Navy, or Air Force. Students receiving their MAJOR support from the Veterans Administration under the G.I. Bill should be reported under column ( $E$ ), "Other Federal sources;" if this form of support does not constitute his MAJOR source, the student should be counted in the appropriate column representing that source.
Department of Health, Education, and Welfare (DHEW), columns ( $B$ ) and (C): Report full-time graduate studenis receiving support from the institutes or divisions of the NATIONAL INSTITU'TES OF HEALTH (NIH), under column (B); support from all other components of DHEW should be reported under column (C), as indicated below:

Column (B)
Division of Research Resources
Fogarty International Center
National Cancer Institute
National Eyo Instituto
Notional Heart, Lung, and Blood Institute
Nätional Institute on Aging
National Institute of Allergy and
Infectious Distoses
National Institute of Arthritis, Metobolisñ, and Digestive Diseoses
National Institute of Child Health and Human Development
National Institute of Dental Reseoreh
National Insititute of Environmental Health Sciences
Nalional Institute of General Medical Sciences
Nalimial Institute of Neurologicol and
Commmicolive Disorders and Stroke
Column (C)
Alabhol, Drug Abuse, and Mental
Heallin Administration (including National
Insiliute of Mental Health)
Comber fur Distase Control
Food and Drug Administration
Heulh Ilesumrees Administration
Healh Sorvias: Alministration
Natimal Instifute of Edueation
Offic: of Education
Surial and lithabilitation Survice
NONFEDERAL SOURCES, columns (F) thru (H):
Institutionol support. column (F): Report full-time graduate students receiving support from your own institution and State and local governments. Funds given to a university by the FEDERAL GOVERNMENT, such as training grant funds, should be reported under the appropriate Federal agencyond NOT reported as instifutional sūp
Foreigin souras, column (G): Include support fromany nonU.S. source.

Other U.S. sourcos, column (H): Include support from nonprofit institutions, private industry, and all other U.S. sōurces.
SELF-SUPPORTED STUDENTS, column (I): Include fulltime graduate students whose major source of support is derived from loans from any source and from personal or family financial contributions. Full-time graduate students receiving the largest portion of their support from Federal loans should be reported here.
WOMEN, lines 10 and 11: Report the sources of support of all first-year women students in line 10 and those beyond their first year in line 11. Please note that in each column. line 10 should not exceed the total of all first-year students and
m.o. line 11 should not exceed the total of those beyond their first year.
FOREIGN STUDENTS, line 12: A FOREIGN full-time graduate student is defined as one who has not attained U.S. citizenship. Do not include native residents of a U.S. possession, such as American Samoa. Applicants for U.S. citizenship are to be considered as "FOREIGN" until the date their citizenship becomes effective.

PART-TIME GRADUATE STUDENTS, item b: A parttime graduate student is defined as a student who is enrolled in a master's or Ph.D. program, who is NOT pursuing graduate work full time as defined above in item 5. Please report the total number of women enrolled part time in column D. If your department has no part-time graduate students, write "NONF" in item 6 and move to item 7.
POSTDOGTORALS AND/OR RESEARCH ASSOCIATES,
Item 7: Under this category, include individuals with science or engineering doctorates or M.D.'s (including foreigñ degreés that are equivalent to U.S. doctorates) who devote FULL TIME to RESEARCH activities or study in the department under temporary appointments carrying no academic rank. Such appointments are usually for a SPECIFIC TIME PERIOD. They may contribute to the academic program through seminars, lectures, or working with graduate students. Their postdoctoral activities have an element of additional training for them. Exclude medical residents, unless RESEARCH TRAINING under the supervision of a Senior Mentor is the PRIME PLíRPOSE of the appoiniment, Under column (A) eriter the number of fellowa and trainees receiving support under Federal training grants and/or fellowships. Under column ( $B$ ) enter the number of research associates appointed with Federal support. Those remaining appointees with non=Government support are to be entered under column (C). Of the total in column (D), enter in column ( $E$ ) the number of postdoctorals with FOREIGN citizenship.

## Fields of Science

This . Form is being mailed to all institutions of higher education in the United States that confer doctorate-level degrees in the sciences and/or engineering, and to all medical schools contributing to the training of science master's and $\overline{\mathrm{P}} . \overline{\mathrm{D}}$. candidates and postdoctorals. Please return the completed forms for each graduate department in your institution represented by the following fields:

## Engineering

## Aeronautical

Agricultural
Architectural
Biomedical
Chemical
Civil
Electrical
Engineering sciences
Industrial
Mechanical
Metallurgical
Mining
Nuclear
Petroleum
Other engineering

## Physical Sciences

Astronomy
Chemistry
Physics
Other physical sciences

## Environmental Sciences

Atmospheric stiences
Geoscientes
Oceanogmphy
Other envirommental sciences

## Mathematical Sciences

Applied mathematics and computer sciences
Mathematics
Statistics

## Life Sciences

Agriculture
Biological sciences
Anatomy
Biochemistry
Biology
Biometry and biostatistics
Biophysics
Botany
Cell biology
Ecology
Entomology and parasitology
Genetics
Microbiólogy
Nutrition
Pathology
Pharmacology
Physiology
Zoology
Other biosciences
Other life sciences
Anesthesiology
Cardiology
Clinical medicine
Clinical pharmacology
Dental sciences
Endocrinology
Gastroenterology
Hematology
Neurology
Nursing.

Obstetrics and gynecology
Ophthalmology
Otorhinolaryngulogy
Pediatrics
Pharmateutieal sciences
Preventive medicine, community and publit heallh
Psychiatry
Pulmonary disense
Radiology
Speech pathology and audiology
Surgery
Veterinary seiences
Oiher heallh related stientes

## Psychōlogy

Clinical psychology
Experimental psychology
Human development
Physiological psychology
Social psychology
Other psychology

## Social Sciences

Agricullural pongomisa
Anthropology
Economies (excepl agric.)
Geography
History and philosophy of science
Linguistics
Political science
Public administration
Social work
Sociology
Urban planning
Other social sciences

PLEASE EXCLUDE FROM YOUR RESPONSE All GRADUATE DEPARTMENTS IN THE FIELDS OF EDUCATIUN, LAW, HUMANITIES, MUSIC, THE ARTS, PHYSICAL EDUCATION, LIBRARY BCIENCE. AND ALL OTHER NONSCIENCE FIELDS.

Form 812 is to be returned to each institution's Survey Coortinator for transmittal by january 31, 1978 to;

Tele Sec Data Preparation Division
1725 K Street, N.W.. Suite 16
Wishington, D.C. 20006

Thank you very much for your cooperation.
Office of Program Planning and Evaluation
National Institutes of Health
Bethesda, Maryland 20014
Division of Science Resources Studies
National Science Foundation
Weshington, D.C. 20550

## other science resources publications

Reports NSF No. Price
Federal Support to Universities. Colleges, and Selected Nonprofit Institutions, Fiscal Year 1978 80=312 In press Projections of Science and Engineering Doctorate Supply and LItilization, 1982 and 1987 ..... 79-303 ..... $\$ 2.25$
Detailed Statistical Tables
Research and Development in Industry, 1978. Funds. 1978;Scientists and Engineers, January 1979$80-307$Employment of Scientists, Engineers, and Technicians inManufacturing Industries, 19774. 46
Academic Science: Scientists and Engineers, January 1979 ..... 79-328
Characteristics of Experienced Scientists and Engineers, 1978 ..... 79.322
Academic Science: R\&D Funds, Fiscal Year 1978 ..... $75-320$
Federal Funds for Research and Development. Fiscal Years1978, 1979, and 1980, Volume XXVIII79-318
Characteristics of Doctoral Scientists and Engineers in the United States, 1977 ..... $79-276$
Reviews of Data on Science Resources
No. 35. "State and Local Government R\&D Expenditures,FY 1977"80-302$\$ 1.25$
No. 34: "Sex and Ethnic Differentials in Employment and Salaries Among Federal Seientists and Engineers" ..... $79-323$ ..... $\$ 1.00$
No. 33. "U.S. Industrial R\&D Spending Abroad" ..... 79-304 ..... $\$ 0.70$
Science Resources Studies Highlights
"National R\&D Spending Expected to Reach $\$ 67$ Billion in 1981 " ..... $80-310$
"Academic Employment of Scientists and Engineers Increased $4 \%$ in Doctorate Institutions in 1979" ..... 80-309
"Employment Of Scientists and Engineers Increased Between 1976 and 1978 But Declined in Some Science Fields" ..... 80-305
"Federal Obligations to Universities and Colleges Continued Real Growth in FY 1978" ..... 80-303
"Doctoral Institutions Report 6\% Real Increase in R\&DExpenditures in FY 1978"80-301"Greatest Increase in 1978 Industrial R\& D Expenditures Providedby $14 \%$ Rise in Companies' Own Funds$80-300$
"Grautuate Science Enrollment in Doctorate-Granting InstitutionsLeveled Off in 1978"79-321
"Real Growth Unlikely in 1980 Federal R\&D Funding" ..... 79-319
"Total Federal R\&D Growth Slight in 1980 but Varies by BudgetFunction"$79-314$

- Decline in Recent Sclence and Engineering Doctoral Faculty Continues into 1978" ..... $79=301$-


[^0]:    **********************************************************************

[^1]:    
    
     1 1 IBtII.

[^2]:    Hased un the National Selence Foundation's Survey of Scientilic and Enpineerina Expenditures it Universities and Collogex. añual serios.

    In the insence of a reliable RKD cost index, the gross national product (GNP) implicit price deflator Was used ti convert current dollars into constant lafe dollars. The GNP deflator can only indicate approximate changes in cosis of ReD performance.
    *National Sctence Foundation. Notiond Potlerns of RHD Hesourcts: Funds $f$ Personnel in the Inited Stotes. 1953-1478-74 [NSF 78-313] (Washington, D.C.: U.S. Government Printing Office. them, table b-2, p. 30.

[^3]:    *Natinal Science Foundinimn Bypunditurns for Scientific
    
     D. © , 20

[^4]:    'George J Nozicka, 'Federally Funded Research and Development a! Universities and Colleges. A Disfihutional Analygis." NSF yrant number SRS 77-20867 (Washington. D.C. Mushmin Assoclutes. Inc., 1979.]
    'Presitent liyndon H . Johnson, directive entitled, "Strenythening the Academic Capability Ior Selunce 'Throughout the Nntion." 1965 .

[^5]:    'National Scionce Foundation, Fxpenditures for Seientific letivities ui Universities and Colleges; op cit, lable I-29. 1. 42.
    'Nozickii op. Git., tubles If through 23.

[^6]:    VIrenols Comberg and Frank I: Atelsek, "Expendilures for Seicnific Resenrch Equipment at Ph D:-Granting Institultons. HY 1978." Higher Education Ponel hepori No. 47 (Wishington I).E.: American Councilon Education, April ivano:
    "Biseid on National Science Foundation's Survey of Saientifie and Engineering Expendibives at Universilies añil Golleges annual series.

[^7]:     Eluntific nñl Engineoring Pergonnel at Univerailies of Golleges, manual sertes,

[^8]:    "Based on Nutional Reseateh Council's Summory Heports. Doctorote Redipitnts from United Sides
     talle t .

[^9]:    "Nalional Science Foundition. Profections of Science und Enginupring Doctorate Supply and Unilizatioñ, 1982
     Prinoing Ufficel, tahle 3 , $p$. 5 .

[^10]:    "Department of Itealh, Bducution, ind Welfare, National Center for Educution Statistics, Projections of Blucotion
     Printing Officel, table as p. 67.

[^11]:    "Howind Tidekman: jame Catdwoll, ind William Voplor. "Parl=timers and the Aculamic labor Markel of the Highties," The Amuricun Socinogigi, Vol. 13 (Nov, 1978), ple 184-105.

[^12]:    ${ }^{17}$ Nationail Seience Foundation, Kimployment Pollerns of Acudemic Scienists ond Finginears. 1973 -नb. (NSF Bo3141 in press.

[^13]:    Whational Research Council, Commission on Human Kusiurcus, "Nonfaculy Doctoral Research Siafl in Sciencée and Lnginesring in United States Univeresties" (Washington. D) $\mathrm{G}_{\mathrm{E}}$ : 1976.1

[^14]:    WNational Kesearch Council, Commission on Human Resources. Hegeareh Excellence Through the Year 2000; Ihe Imporiance of Mainiaining a How of New Foculty Inio Acoulamic Reseafoh (Washington. D.C., 1979), p. i.
    "Robert E. Klitgaard, "The Deedine of the Best?" An Analyais of the Relationship Belween Declining Enrollments. Th, D. Productions, and Hesearch (Cambridge, Mass:: liarvard Univ., May $1979 . \mid$

[^15]:    "Darbara Tuckman and Howard P. Tuckman, "Sex Diseriminalion Among Pitheimors at Swo-Year Inĝtutions of Hipher Eidicition." paper funded by the Ford Foundation under ajpant to the American Association of University Professors, 1979.
    "I Loward P P Tuckman ind Jime Caldwell. "The Reward Structure Ior Part-Timers in Academe." paper funded hy the Port Poundation under a grant to the Ameriean Assucintion of Universily Professors, 1979.

[^16]:    EDeparment of I Lealh, Edugition, and Welfare National Center for Education Stitistics, Survey of Salaries. Tenure, and Fringe Ilencfits of FulleTime Instruelional Facelty in Institulions of t lighor Education. innual series.
    ${ }^{*}$ National Scibnce Foundaibun. U.S. Scientisis and Finginters: 1978 (Detailed Statistical Tiobleg) (NSF b0e304) (Warhinqtons. O.S: 19B0;)

[^17]:    ${ }^{29}$ National Science Foundation, "Sex and Ethnic Differentials in Employment and Sularies Among Federal Scientista and Engineers," Reviews of Doto on Science Hesourcess No, 34 (NSF 70-323) (Washington, D.C.: U.S. Guvernment Printing Office, Dec. 1979.)
    "Nutional Research Council, Committee on the Education and Employment of Women in Science and Engineering, Climbing the Academic Ladder: Doctorol Women Scientists in Academa (Washington. D.C., 1979), pp. 88-94.
    ${ }^{77}$ National Science Foundation, Charucteristics of Docioral Scienisis und Enginners in the United Stotes: 1977 (Detailed Stutict Tablea) (NSF 70-306) (Waghingoñ. [.C., 1979), р. 4.
    ECLire Rose. "The Study of the Academic Employment and Graduate Énzollment Patterns for Women in Science und Fnginegring" under NSF grant numberg SRS 76-82705 iñil SRS 77 =16927 (İon Angeles, Calif: Evaluation and 'Iraining Institule, Dec. 1976.|

[^18]:    "The National Science Foundation estimated thal the total number of Ph.D.'s in the lahor force that is expected to work in industrial Red positions will rise 30 purcent between 1977 and 1987, while those in faculty positions will grow by only 11 percent. See National Science Foundation. Projections of Science und Engineering Doctorate Supply ound Utilizatioñ, op. eit, p, viii.
    "National Science Foundation, Choructeristics of Doctorol Seienisis ond Eingineers in the United Stotes, op, cil., tuble B-6 and revised data for 1973.

[^19]:    ${ }^{5}$ Divid W. Breneman: Graduote School Adjustments to the "Nuw Depression" in Higher Educution, Technical Heport Nie. a Wishinglon, Dé, National board on Graduate Education, Feb, 1975.)

[^20]:    "Nitioñal Researth Council, Summory heports. op. git: table 1 .

[^21]:    "Based on National Selence Foundation's Survey of Graduate Selence Student Support and Posidoctorals. annual sertes beginning iñ 1974.

[^22]:    "Departmeni of I lealth, Education, and Welfare, National Contor lor ligher Education, Survey of Opening Fall Eerollment in Higher Education, annual geries.

[^23]:    ${ }^{3}$ Hased oñ National Scieñe Poundal *ederal Support to Uñversities and C teriens.

[^24]:    Harsel on dibit provided on National Science Foundation's
     in Crodugln Sciance Sludent Support and Mañōwer Hiszourcos in Gruduate Seience Education. Fall 1969 [NSF F0-40], (Wishingion, D.C.: U.S. Goveroment Printing Office) añ unpublished din from fall 1967 Graduate Ifancoship Applications.

[^25]:    4-Nutional Science Foundation, Graduate Student Support and Manpower hesources in Graduote Science Education. Foll 1977 (NSF 73:304) (Washingion, D.C. U.S. Government Printing Office, , p. $\mathbf{B z}$.
    "Office of Managemunt and Budget, Appendix to the Budget of the United Stotes Government, Fiseal Yeor 1477. p. 350 . ind Fiscol Year 1974, p. 428, (Washingion, U.C.: U.S. Government Printing Offiee,

[^26]:    ${ }^{4}$ National Research Council. Summory Reports. op, cit., Juñe 1974-June 1977, lable 1.

[^27]:    "Depariment of Health, Education, añ Welfare, National
    Center for Higher Education, Survey of Opening Fall
    "Department of Healih, Educatioñ, and Welfare, National
    Center for Higher Education, Survey of Opening Fall Enrollment in Higher Education, annual series.
    "Institute of International Education, Open Doors $1977 / 70$, A Heport on Internutional Educational Exchange (New York. N.Y.. 1979), table 1, p. 2.
    "Based on unpublished data from National Science Foundation's Graduate Traineeship Applications for Fall 1967.

[^28]:    *Institute of International Et 35. $\mathrm{p}, 24$.

[^29]:    ${ }^{4}$ National Science Foundation, Groduate Solence Educution: Student Support and Posidoctorals. Foll 1973 (NSF 74-318) (Washington, D.C.: U.S. Government Printing Olficel. p. 57.
    "Department of llealth, Education, and Welfare, National Center for Education Statistics, Survey of Opening Fall Enrollment in Higher Education, annual geries.

[^30]:    TAntional Science Foundation, Fvoluation of the Survey of Sifientific Activities of Insitititions of Higher Bilucution, by Rohert R. Wright (Washington, D.C., 1973)

[^31]:    ${ }^{2}$ Wesiat, Ine. "Assessment of Coverage, Consistency of Reporting ind Methodulosy of the 1973 Graduate Science Student Support Survey; A Relability ind Validity Study." (Roskville, Md. 1975. )

    - Richard M, Berry, NSF icodemic Soiunce Stolistics Postenunuration siudy, supported by Intergovernmental Personnel Act. Agreement No. SRS-7719419, July 18. 1977, National Science Foundation (Bualder, Colo: National Cintur fof Higher Eilucation Management Systoms. 1978.)

[^32]:    Universities and Nonprofit Institutions Studies Group
    National Science Foundation
    Room L-602
    Washington, D.C. 20550

[^33]:    includer research, development, and insituction.

[^34]:    SOURCE: National Science Foundation

[^35]:    SOURCE: National Sciance Foundation

[^36]:    ${ }^{1}$ At doctorato-granting instilutions.
    SOURCE: National Science Foundation and National Research Couneil

[^37]:    Ames Laboratory
    Applied Physics Laboratory (Johns Hopkins University)
    Applied Research Laboratory
    Argonne National Laboratory
    Brookhaven National Laboratory
    Center for Naval Analyses
    Cerro Tololo Inter-American Observatory
    E. O. Lawrence Berkeley Laboratory E. O. Lawrence Livermore Laboratory Fermi National Accelerator Laboratory Jet Propulsion Laboratory
    Kitt Peak National Observatory
    Lincoln Laboratory
    Los Alamos Scientific Laboratory
    National Astronomy and Ionosphere Center
    National Center for Atmospheric Research
    National Radio Astronomy Observatory
    Oak Ridge Associated Universities
    Plasma Physics Laboratory
    Space Radiation Effects Laboratory
    Stanford Linear Accelerator Center

[^38]:    ' Personnel employed ád emputer progremmera ahould be reported an techniciana (item 7).
    ${ }^{3}$ Erclude personnel primarily involved in direct patient care,

